首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature‐dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature‐dependent processes that are common to all consumer–resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.  相似文献   

2.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

3.
A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri‐trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri‐trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom‐up and top‐down controls over the distribution of biomass across trophic levels and other ecosystem‐level variables. Here, we propose pathways to bridge these two long‐standing perspectives. We argue that an expanded theory of tri‐trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri‐trophic theory systematically across all levels of biological organisation.  相似文献   

4.
Classical food web theory holds that energy channels are regulated by top‐down control with increasing productivity, arising from within‐channel processes. However, these hypotheses do not consider the existence of parallel energy channels linked by shared resource pools and which can fuel generalist predators, imposing trophic control arising from multi‐channel processes. Using 23 large marine food webs, we show that food web responses to increasing productivity are consistent with the apparent trophic cascade hypothesis (ATCH) – with rising productivity predators derive an increasing fraction of their diet from increasingly productive bottom‐up controlled detritus channels, thereby subsidising predator biomass, and in turn strengthening top‐down control in parallel grazing channels. These results testify to a fundamental role of detritus channels specifically and multi‐channel processes in general in mediating food web response to productivity and demonstrate that the ATCH provides an alternative explanation for classical predictions of top‐down control.  相似文献   

5.
Disturbances have long been recognized as important forces for structuring natural communities but their effects on trophic structure are not well understood, particularly in terrestrial systems. This is in part because quantifying trophic linkages is a challenge, especially for small organisms with cryptic feeding behaviors such as insects, and often relies on conducting labor‐intensive feeding trials or extensive observations in the field. In this study, we used stable isotopes of carbon and nitrogen to examine how disturbance (annual biomass harvesting) in tallgrass prairies affected the trophic position, trophic range, and niche space of ants, a widespread grassland consumer. We hypothesized that biomass harvest would remove important food and nesting resources of insects thus affecting ant feeding relationships and trophic structure. We found shifts in the feeding relationships inferred by isotopic signatures with harvest. In particular, these shifts suggest that ants within harvest sites utilized resources at lower trophic levels (possibly plant‐based resources or herbivores), expanded trophic breadth, and occupied different niche spaces. Shifts in resource use following harvest could be due to harvest‐mediated changes in both the plant and arthropod communities that might affect the strength of competition or alter plant nitrogen availability. Because shifts in resource use alter the flow of nutrients across the food web, disturbance effects on ants could have ecosystem‐level consequences through nutrient cycling.  相似文献   

6.
Studies examining the relationship between species richness and the productivity of ecological communities have taken one of two opposite viewpoints, viewing either productivity as a primary driver of richness or richness as a driver of productivity. Recently, verbal and graphical hypotheses have been proposed that attempt to merge these perspectives by clarifying the causal pathways that link resource supply, species richness, resource use, and biomass production. Here we present mathematical models that formalize how these pathways can operate simultaneously in a single ecological system. Using a metacommunity framework in which classic consumer-resource competition theory governs species interactions within patches, we show that the mechanisms by which resource supply influences species richness are inherently linked to the mechanisms by which species richness controls resource use and biomass production. Unlike prior hypotheses, our models show that resource supply can affect species richness and that richness can affect productivity simultaneously at a single spatial scale. Our models also reproduce scale-dependent associations between species richness and community biomass that have been reported elsewhere. By detailing the pathways by which resource supply, species richness, biomass production, and resource use are connected, our models move closer to resolving the nature of causality in diversity-productivity relationships.  相似文献   

7.
Food chain theory is one of the cornerstones of ecology, providing many of its basic predictions, such as biomass pyramids, trophic cascades and predator–prey oscillations. Yet, ninety years into this theory, the conditions under which these patterns may occur and persist in nature remain subject to debate. Rather than address each pattern in isolation, we propose that they must be understood together, calling for synthesis in a fragmented landscape of theoretical and empirical results. As a first step, we propose a minimal theory that combines the long‐standing energetic and dynamical approaches of food chains. We chart theoretical predictions on a concise map, where two main regimes emerge: across various functioning and stability metrics, one regime is characterised by pyramidal patterns and the other by cascade patterns. The axes of this map combine key physiological and ecological variables, such as metabolic rates and self‐regulation. A quantitative comparison with data sheds light on conflicting theoretical predictions and empirical puzzles, from size spectra to causes of trophic cascade strength. We conclude that drawing systematic connections between various existing approaches to food chains, and between their predictions on functioning and stability, is a crucial step in confronting this theory to real ecosystems.  相似文献   

8.
Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e., metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow‐water habitats: sandy soft‐bottoms, marine vegetation, and rocky reef substrates. Primary producers and detritus—key food sources for meiofauna—increased in biomass under the combined effect of temperature and acidification. The enhanced bottom‐up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present‐day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast‐growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.  相似文献   

9.
10.
Species extinctions are biased towards higher trophic levels, and primary extinctions are often followed by unexpected secondary extinctions. Currently, predictions on the vulnerability of ecological communities to extinction cascades are based on models that focus on bottom‐up effects, which cannot capture the effects of extinctions at higher trophic levels. We show, in experimental insect communities, that harvesting of single carnivorous parasitoid species led to a significant increase in extinction rate of other parasitoid species, separated by four trophic links. Harvesting resulted in the release of prey from top‐down control, leading to increased interspecific competition at the herbivore trophic level. This resulted in increased extinction rates of non‐harvested parasitoid species when their host had become rare relative to other herbivores. The results demonstrate a mechanism for horizontal extinction cascades, and illustrate that altering the relationship between a predator and its prey can cause wide‐ranging ripple effects through ecosystems, including unexpected extinctions.  相似文献   

11.
  1. It is often assumed that invertebrate consumers in small tropical streams are dependent on allochthonous sources, although recent studies indicate that algae can form the base of food webs in tropical streams. Fish in tropical streams can feed across several trophic levels and the origin and path of energy and nutrient flow is uncertain for many species.
  2. We collected fish, insects, periphyton, and leaf litter from 20 streams across four Atlantic Forest catchments. We analysed stomach contents of fish to define trophic guild and fish dietary trophic position. We also analysed stable isotopes of carbon and nitrogen of fish and their resources to identify the main basal resources of the food web and to estimate trophic positions and identify the path of energy flow.
  3. We found that autochthonous sources were the primary resource base for fish communities. Trophic positions estimated from diet and isotopes were similar and correlated for insectivore and algivore–insectivore fish, but not for algivore–detritivore or omnivore fish. Using path analysis, fish classified as algivore–detritivores appear to have derived their biomass through a diet of primary consumer insects and periphytic algae and thus, are more likely to play a trophic role as algivore–insectivores in these streams. However, omnivores probably derived much of their biomass from aquatic insects.
  4. Our findings support other studies of tropical systems in which the main basal resource is autochthonous, even in small streams. We also show that the assignment to a specific trophic guild for some fish species, based on gut contents, does not reflect what they assimilate into their bodies. In some species, food sources that are uncommon can make a disproportionately important contribution to their biomass.
  5. This study affirms the important role of inconspicuous algal resources in aquatic food webs, even in small forested streams, and demonstrates the effectiveness of taking a combined approach of diet analysis, isotopic tracing, and modelling to resolve food web pathways where the level of omnivory is high.
  相似文献   

12.
How species richness is distributed across trophic levels determines several dimensions of ecosystem functioning, including herbivory, predation, and decomposition rates. We perform a meta‐analysis of 72 large published food webs to investigate their trophic diversity structure and possible endogenous, exogenous, and methodological causal variables. Consistent with classic theory, we found that published food webs can generally be described as ‘pyramids of species richness’. The food webs were more predator‐poor, prey‐rich and hierarchical than is expected by chance or by the niche or cascade models. The trophic species richness distribution also depended on centrality, latitude, ecosystem‐type and methodological bias. Although trophic diversity structure is generally pyramidal, under many conditions the structure is consistently uniform or inverse‐pyramidal. Our meta‐analysis adds nuance to classic assumptions about food web structure: diversity decreases with trophic level, but not under all conditions, and the decrease may be scale‐dependent. Synthesis The distribution of species richness across trophic levels has not been evaluated in recent decades, despite improvement in food web resolution and the relevance of biodiversity distribution to ecosystem function. Our meta‐analysis of 72 large, recent food webs, illustrates that published food webs can generally be described as basal‐rich, top‐poor ‘pyramids of species richness’, consistent with classic theory. Although trophic diversity structure is generally pyramidal, under some environmental and ecological conditions the structure is uniform or inverse‐pyramidal. Our meta‐analysis confirms classic theory about food web structure, while adding nuance by describing conditions under which classic pyramid structure is not observed.  相似文献   

13.
14.
The idea that interspecific variation in trophic morphology among closely related species effectively permits resource partitioning has driven research on ecological radiation since Darwin first described variation in beak morphology among Geospiza. Marine turtles comprise an ecological radiation in which interspecific differences in trophic morphology have similarly been implicated as a pathway to ecopartition the marine realm, in both extant and extinct species. Because marine turtles are charismatic flagship species of conservation concern, their trophic ecology has been studied intensively using stable isotope analyses to gain insights into habitat use and diet, principally to inform conservation management. This legion of studies provides an unparalleled opportunity to examine ecological partitioning across numerous hierarchical levels that heretofore has not been applied to any other ecological radiation. Our contribution aims to provide a quantitative analysis of interspecific variation and a comprehensive review of intraspecific variation in trophic ecology across different hierarchical levels marshalling insights about realised trophic ecology derived from stable isotopes. We reviewed 113 stable isotope studies, mostly involving single species, and conducted a meta‐analysis of data from adults to elucidate differences in trophic ecology among species. Our study reveals a more intricate hierarchy of ecopartitioning by marine turtles than previously recognised based on trophic morphology and dietary analyses. We found strong statistical support for interspecific partitioning, as well as a continuum of intraspecific trophic sub‐specialisation in most species across several hierarchical levels. This ubiquity of trophic specialisation across many hierarchical levels exposes a far more complex view of trophic ecology and resource‐axis exploitation than suggested by species diversity alone. Not only do species segregate along many widely understood axes such as body size, macrohabitat, and trophic morphology but the general pattern revealed by isotopic studies is one of microhabitat segregation and variation in foraging behaviour within species, within populations, and among individuals. These findings are highly relevant to conservation management because they imply ecological non‐exchangeability, which introduces a new dimension beyond that of genetic stocks which drives current conservation planning. Perhaps the most remarkable finding from our data synthesis is that four of six marine turtle species forage across several trophic levels. This pattern is unlike that seen in other large marine predators, which forage at a single trophic level according to stable isotopes. This finding affirms suggestions that marine turtles are robust sentinels of ocean health and likely stabilise marine food webs. This insight has broader significance for studies of marine food webs and trophic ecology of large marine predators. Beyond insights concerning marine turtle ecology and conservation, our findings also have broader implications for the study of ecological radiations. Particularly, the unrecognised complexity of ecopartitioning beyond that predicted by trophic morphology suggests that this dominant approach in adaptive radiation research likely underestimates the degree of resource overlap and that interspecific disparities in trophic morphology may often over‐predict the degree of realised ecopartitioning. Hence, our findings suggest that stable isotopes can profitably be applied to study other ecological radiations and may reveal trophic variation beyond that reflected by trophic morphology.  相似文献   

15.
Ecosystem properties result in part from the characteristics of individual organisms. How these individual traits scale to impact ecosystem‐level processes is currently unclear. Because metabolism is a fundamental process underlying many individual‐ and population‐level variables, it provides a mechanism for linking individual characteristics with large‐scale processes. Here we use metabolism and ecosystem thermodynamics to scale from physiology to individual biomass production and population‐level energy use. Temperature‐corrected rates of individual‐level biomass production show the same body‐size dependence across a wide range of aerobic eukaryotes, from unicellular organisms to mammals and vascular plants. Population‐level energy use for both mammals and plants are strongly influenced by both metabolism and thermodynamic constraints on energy exchange between trophic levels. Our results show that because metabolism is a fundamental trait of organisms, it not only provides a link between individual‐ and ecosystem‐level processes, but can also highlight other important factors constraining ecological structure and dynamics.  相似文献   

16.
A central goal of ecology is to understand the mechanisms behind variation in the abundance of species. Food web theory predicts higher biomass for animals at lower trophic levels. However, some high trophic level species may reach great abundance via highly efficient foraging behaviors. We evaluated ecological and behavioral traits of the giant tropical ant Dinoponera australis related to these mechanisms. We determined its distribution and abundance, documented its foraging behavior, and measured its trophic position in a population at P.N. Iguazú, Argentina. We report that D. australis colonies are overdispersed, and the species reaches a wet biomass of more than 2.5 kg/ha at this site. Dinoponera australis foraging behavior is characterized by route fidelity of individual workers, with different individuals specializing on different areas around the nest. Finally, stable isotopic evidence and direct observation suggest these ants are among the top predators in this terrestrial invertebrate community. We interpret our findings in the context of how the behavior of an abundant top predator creates an exception to the usual trade‐off between biomass and trophic level. Together these data provide insight into the biology of one of the world's largest ants and why they may be able to attain such high densities where they occur.  相似文献   

17.
Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate‐driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom‐up and top‐down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic homogenization. Our conceptual framework based on the match–mismatch between donor and recipient organisms may facilitate understanding of the multiple effects of global change and aid in the development of future research questions.  相似文献   

18.
Trophic cascades, in which changes in predation affect the biomass of lower trophic levels, vary substantially in strength and incidence. Most work to explain this variation has focused on local factors and has ignored larger regional effects. To study how metacommunity dynamics can alter trophic cascades, we constructed mesocosm metacommunities consisting of three pond communities with heterogeneous levels of fish predation and examined how planktonic dispersal rate (5–140% per week) affected biomass partitioning. Two of the three communities differed continually in the occurrence of fish and supported different but constant environments in a 'spatial trophic cascade,' while the third community supported temporally variable fish occurrence in a 'temporal trophic cascade.' We find that the presence, but the not the magnitude, of dispersal dampens temporal trophic cascades through an increase in grazer biomass. In contrast, dispersal has no effect on the strength of spatial cascades due to strong sorting pressures in the communities with constant presence or absence of fish as top predators.  相似文献   

19.
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.  相似文献   

20.
Mass mortality events (MMEs) are rapidly occurring, substantial population losses that transpire within a short time interval relative to the generation time of the affected organism. Previous work has established that MMEs appear to be increasing in frequency and magnitude; however, currently, there is little understanding of the consequences of MMEs for biological communities. Here, we use theory and empirical data from observed MMEs to understand how MMEs impact the structure and dynamics of communities. To do so, we build upon existing resource pulse and trophic cascade theory to show that MMEs both share similarities and diverge from these ecological phenomena, producing distinct short‐ and long‐term impacts by jointly altering the effects of species interactions across trophic levels and providing an influx of resources from decaying biomass. Second, we investigate how the magnitude of MMEs, trophic level of the impacted species, overall food web structure and ecosystem type may mediate the resulting ecological response. Third, we compare the understanding gained by our models to existing observational data on MMEs. Our synthesis, offers an empirical path forward for understanding MMEs through experimentation and improved observational data collection. While complex, resolving the consequences of MMEs should be a high research priority due to their role in determining how ecological systems respond to environmental change driven by rare events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号