首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The relationship between ectotherm ecology and climatic conditions has been mainly evaluated in terms of average conditions. Average temperature is the more common climatic variable used in physiological and population studies, and its effect on individual and population-level processes is well understood. However, the intrinsic variability of thermal conditions calls attention to the potential effects that this variability could have in ecological systems. Regarding this point, two hypotheses are proposed. From the allocation principle, it may be inferred that if temperature variability is high enough to induce stress in the organisms, then this extra-cost should reduce the energetic budget for reproduction, which will be reflected in population parameters. Moreover, a mathematical property of non-linear functions, Jensen’s inequality, indicates that, in concave functions, like the temperature–reproduction performance function, variability reduces the expected value of the output variable, and again modifies population parameters. To test these hypotheses, experimental cultures of Tribolium confusum under two different thermal variability regimens were carried out. With these data, we fitted a simple population dynamics model to evaluate the predictions of our hypothesis. The results show that thermal variability reduces the maximum reproductive rate of the population but no other parameters such as carrying capacity or the nonlinear factor in a nonlinear version of the Ricker model, which confirms our hypotheses. This result has important consequences, such as the paradoxical increase in population variability under a decrease in thermal variability and the necessary incorporation of climatic variability to evaluate the net effect of climate change on the dynamics of natural populations.  相似文献   

2.
    
Co‐dependent geological and climatic changes obscure how species interact in deep time. The interplay between these environmental factors makes it hard to discern whether ecological competition exerts an upper limit on species richness. Here, using the exceptional fossil record of Cenozoic Era macroperforate planktonic foraminifera, we assess the evidence for alternative modes of macroevolutionary competition. Our models support an environmentally dependent macroevolutionary form of contest competition that yields finite upper bounds on species richness. Models of biotic competition assuming unchanging environmental conditions were overwhelmingly rejected. In the best‐supported model, temperature affects the per‐lineage diversification rate, while both temperature and an environmental driver of sediment accumulation defines the upper limit. The support for contest competition implies that incumbency constrains species richness by restricting niche availability, and that the number of macroevolutionary niches varies as a function of environmental changes.  相似文献   

3.
    
Bodil K. Ehlers  Trine Bilde 《Oikos》2019,128(6):765-774
The findings that some plants alter their competitive phenotype in response to genetic relatedness of its conspecific neighbour (and presumed competitor) has spurred an increasing interest in plant kin‐interactions. This phenotypic response suggests the ability to assess the genetic relatedness of conspecific competitors, proposing kin selection as a process that can influence plant competitive interactions. Kin selection can favour restrained competitive growth towards kin, if the fitness loss from reducing own growth is compensated by increased fitness in the related neighbour. This may lead to positive frequency dependency among related conspecifics with important ecological consequences for species assemblage and coexistence. However, kin selection in plants is still controversial. First, many studies documenting a plastic response to neighbour relatedness do not estimate fitness consequences of the individual that responds, and when estimated, fitness of individuals grown in competition with kin did not necessarily exceed that of individuals grown in non‐kin groups. Although higher fitness in kin groups could be consistent with kin selection, this could also arise from mechanisms like asymmetric competition in the non‐kin groups. Here we outline the main challenges for studying kin selection in plants taking genetic variation for competitive ability into account. We emphasize the need to measure inclusive fitness in order to assess whether kin selection occurs, and show under which circumstances kin selected responses can be expected. We also illustrate why direct fitness estimates of a focal plant, and group fitness estimates are not suitable for documenting kin selection. Importantly, natural selection occurs at the individual level and it is the inclusive fitness of an individual plant – not the mean fitness of the group – that can capture if a differential response to neighbour relatedness is favoured by kin selection.  相似文献   

4.
    
Intraspecific trait variation is ubiquitous and is likely to influence species coexistence. Despite theoretical progress, empirical work on the effects of intraspecific variation on the dynamics of competing species is rare. This is because of the formidable empirical requirements necessary to link intraspecific variation in species' functional traits with intraspecific variation in the demographic and competitive rates that mediate coexistence. Here we partially overcome these challenges to determine how intraspecific variation in reproductive phenology in a native Californian annual plant species Lasthenia californica affects its ability to coexist with two non-native species Bromus madritensis and Lactuca serriola that display contrasting phenological patterns. Using data from a field experiment, we empirically parameterize a model of competitive population dynamics, accounting for the effects of intraspecific phenological trait variation on the native species' response to both intra- and interspecific competition. We find that intraspecific variation in phenology drives differences in the native species' response to competition. Moreover, simulations of the parameterized model show that this variation improves the competitive performance of the native species. This occurs because of the effects of nonlinear averaging mediated by a nonlinear, concave-up competition function that is a general feature of competition across a wide range of taxa. While intraspecific variation improves competitive performance, we also find that the magnitude of the benefit is predicted to be insufficient to prevent competitive exclusion against the non-native species with early phenogy Bromus. Against the second non-native species with later phenology Lactuca, intraspecific variation is predicted to result in coexistence where competitive exclusion would otherwise occur, but we could not rule out alternative qualitative outcomes for this interaction.  相似文献   

5.
    
Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high‐dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high‐dimensional model, representing “perfect knowledge” of individual response to the environment, to illustrate how large observed IV can result from “imperfect knowledge” of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long‐term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis‐representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high‐dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.  相似文献   

6.
    
Plants often compete with closely related individuals due to limited dispersal, leading to two commonly invoked predictions on competitive outcomes. Kin selection, from evolutionary theory, predicts that competition between relatives will likely be weaker. The niche partitioning hypothesis, from ecological theory, predicts that competition between close relatives will likely be stronger. We tested for evidence consistent with either of these predictions by growing an annual legume in kin and nonkin groups in the greenhouse. We grew plant groups in treatments of symbiotic nitrogen fixing bacteria differing in strain identity and composition to determine if differences in the microbial environment can facilitate or obscure plant competition patterns consistent with kin selection or niche partitioning. Nonkin groups had lower fitness than expected, based on fitness estimates of the same genotypes grown among kin. Higher fitness among kin groups was observed in mixtures of N‐fixing bacteria strains compared to single inoculations of bacteria strains present in the soil, which increased fitness differences between kin and nonkin groups. Lower fitness in nonkin groups was likely caused by increased competitive asymmetry in nonkin groups due to genetic differences in plant size combined with saturating relationships with plant size and fitness‐ i.e. Jensen's inequality. Our study suggests that microbial soil symbionts alter competitive dynamics among kin and nonkin. Our study also suggests that kin groups can have higher fitness, as predicted by kin selection theory, through a commonly heritable trait (plant size), without requiring kin recognition mechanisms.  相似文献   

7.
    
Habitat orientation has recently been demonstrated to affect the foraging behavior, growth, and production of plankton grazers. Because the orientation effect may vary with species, we hypothesize that habitat orientation may alter interspecific interactions between animal species. We experimentally investigated how habitat orientation (placing cuboid chambers in three orientations with long, medium, and small side as the chamber height) affected the interaction between two common cladoceran species, Daphnia magna and Moina micrura, which competitively exploited green algae of Chlorella pyrenoidosa at two volume scales (64 and 512 ml). Results show that chamber orientation and volume additively affected the behavior and species performance of the grazers. Specifically, both grazer species generally decreased their average swimming velocity, grazing rate (on algal cells), body size, and survival and reproduction rates with increasing chamber height for both chamber volumes and with decreasing chamber volume regardless of chamber orientation. Nevertheless, the decrease magnitude was greater for M. micrura with increasing chamber height but was greater for D. magna with decreasing chamber volume. Correspondingly, when cocultured, the density ratio of D. magna to M. micrura increased with increasing chamber height but decreased with decreasing chamber volume. At the end of the experiment, none of D. magna individuals survived in the small and short (large‐based) chambers, and few M. micrura individuals survived in large and tall (small‐based) chambers. These results indicate that both habitat orientation and size affect the outcome of interspecific competition between grazer species. We suggest that variation in habitat orientation may improve community coexistence and species diversity in nature.  相似文献   

8.
    
Ecologists have made substantial progress evaluating the influences of adaptive behaviors on population dynamics and communities. But no-one has examined the joint influences of stochastic variation, predators, and density-dependent habitat selection on our interpretations of species coexistence. I begin the search with simulation models of habitat isodars (lines along which the fitness of individuals is identical in two or more habitats) assuming ideal-free habitat selection by two prey species exploited by a habitat-selecting parasitoid predator. The models include both regulating and non-regulating stochasticity. The intriguing results include the following: (1) all three species often achieved a true ideal-free distribution; (2) predators reduced prey population sizes and increased the frequency of local habitat extinctions; (3) despite the predator's differential reduction of prey densities, there was no evidence of apparent competition; (4) all species exhibited pulses of dispersal associated with donor–receiver population dynamics; (5) isodars produced valid estimates of competition between prey only in constant environments lacking habitat-selecting predators; (6) habitat-selection by predators forced prey into their preferred habitats; (7) the resulting ghost of competition obscured the prey species' competitive interaction; (8) isodars correctly revealed density-dependent habitat selection by the predator. Overall, the results appeared to depend primarily on the predator's habitat choice, rather than on prey trade-offs between competitive ability and reduced value (handling time) to the predator. Habitat selection theory, and its revelation via isodars, can thus provide considerable insight into processes affecting real communities, and most especially if ecologists assess carefully the constraints for their analysis and interpretation. Nevertheless, isodars designed to measure competition are likely to be most reliable in donor-controlled or experimental systems where regulating stochasticity has relatively little influence on prey dynamics.  相似文献   

9.
Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day-to-day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non-linearly to environmental drivers. We assessed how these individual-process responses to changes in day-to-day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.  相似文献   

10.
11.
12.
    
Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life‐history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life‐history strategy, based on growth‐mortality trade‐offs, from seedling to adult tree for 47 species in a tropical forest. Species’ life‐history strategies remained consistent across stages: fast‐growing species had higher mortality than slow‐growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast‐growing species tended to suffer greater CNDD than slow‐growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities.  相似文献   

13.
    
Patterns of local adaptation are expected to emerge when selection is spatially heterogeneous and sufficiently strong relative to the action of other evolutionary forces. The observation of local adaptation thus provides important insight into evolutionary processes and the adaptive divergence of populations. The detection of local adaptation, however, suffers from several conceptual, statistical and methodological issues. Here, we provide practical recommendations regarding (1) the definition of local adaptation, (2) the analysis of transplant experiments and (3) the optimisation of the experimental design of local adaptation studies. Together, these recommendations provide a unified approach for measuring local adaptation and understanding the adaptive divergence of populations in a wide range of biological systems.  相似文献   

14.
    
  1. Previous macrophysiological studies suggested that temperature‐driven color lightness and body size variations strongly influence biogeographical patterns in ectotherms. However, these trait–environment relationships scale to local assemblages and the extent to which they can be modified by dispersal remains largely unexplored. We test whether the predictions of the thermal melanism hypothesis and the Bergmann's rule hold for local assemblages. We also assess whether these trait–environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats.
  2. We quantified the color lightness and body volume of 99 European dragon‐ and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent‐wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while accounting for spatial and phylogenetic autocorrelation.
  3. The color lightness of assemblages of odonates increased, and body size decreased with increasing temperature. Trait–environment relationships in the average and phylogenetic predicted component were equally important for assemblages of both habitat types but were stronger in lentic assemblages when accounting for phylogenetic autocorrelation.
  4. Our results show that the mechanism underlying color lightness and body size variations scale to local assemblages, indicating their general importance. These mechanisms were of equal evolutionary significance for lentic and lotic species, but higher dispersal ability seems to enable lentic species to cope better with historical climatic changes. The documented differences between lentic and lotic assemblages also highlight the importance of integrating interactions of thermal adaptations with proxies of the dispersal ability of species into trait‐based models, for improving our understanding of climate‐driven biological responses.
  相似文献   

15.
16.
    
Aim We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent‐based, simulation framework. Location East Texas and Louisiana, USA. Methods We drew upon extensive field data from the US Forest Service and the US Geological Survey to calculate spread rate from 2003 to 2008 and to parameterize logistic regression models estimating habitat quality for Chinese tallow within individual habitat cells. We applied the regression analyses to represent population spread rate as a function of habitat quality, integrated this function into a logistic model representing local spread, and coupled this model with a dispersal model based on a lognormal kernel within the simulation framework. We simulated invasions beginning in 2003 based on several different dispersal velocities and compared the resulting spatial patterns to those observed in 2008 using cross Mantel’s tests. We then used the best dispersal velocity to predict range expansion to the year 2023. Results Chinese tallow invasion is more likely in low and flat areas adjacent to water bodies and roads, and less likely in mature forest stands and in pine plantations where artificial regeneration by planting seedlings is used. Forecasted invasions resulted in a distribution that extended from the Gulf Coast of Texas and Louisiana northward and westward as much as 300 km, representing approximately 1.58 million ha. Main conclusions Our new approach of calculating time series projections of annual range expansion should assist land managers and restoration practitioners plan proactive management strategies and treatments. Also, as field sampling continues on the national array of FIA plots, these new data can be incorporated easily into the present model, as well as being used to develop and/or improve models of other invasive plant species.  相似文献   

17.
    
Spatial genetic structure (SGS) of plants results from the nonrandom distribution of related individuals. SGS provides information on gene flow and spatial patterns of genetic diversity within populations. Seed dispersal creates the spatial template for plant distribution. Thus, in zoochorous plants, dispersal mode and disperser behaviour might have a strong impact on SGS. However, many studies only report the taxonomic group of seed dispersers, without further details. The recent increase in studies on SGS provides the opportunity to review findings and test for the influence of dispersal mode, taxonomic affiliation of dispersers and their behaviour. We compared the proportions of studies with SGS among groups and tested for differences in strength of SGS using Sp statistics. The presence of SGS differed among taxonomic groups, with reduced presence in plants dispersed by birds. Strength of SGS was instead significantly influenced by the behaviour of seed dispersal vectors, with higher SGS in plant species dispersed by animals with behavioural traits that result in short seed dispersal distances. We observed high variance in the strength of SGS in plants dispersed by animals that actively or passively accumulate seeds. Additionally, we found SGS was also affected by pollination and marker type used. Our study highlights the importance of vector behaviour on SGS even in the presence of variance created by other factors. Thus, more detailed information on the behaviour of seed dispersers would contribute to better understand which factors shape the spatial scale of gene flow in animal‐dispersed plant species.  相似文献   

18.
We used metapopulation dynamics to develop a mathematical simulationmodel for brood parasites and their hosts in order to investigatethe validity of the "spatial habitat structure hypothesis,"which states that a low level of parasite egg rejection in hostpopulations is due to the immigration of acceptor individualsfrom nonparasitized populations. In our model, we varied dispersalrate and the relative carrying capacity of host individualsin parasitized and unparasitized patches. When both the relativecarrying capacity in the parasite-free patch and the dispersalrate increase, the nonparasitized patch will provide more acceptorindividuals to the parasite-prone patch. As the relative carryingcapacity in the parasite-free patch increases, the equilibriumfrequency of rejecters both in the parasite-prone and in theparasite-free patch decreases toward zero for intermediate levelsof the dispersal rate. Although the rejecter strategy is moreadaptive than the acceptor strategy in the parasite-prone patch,large numbers of acceptors are produced in the parasite-freepatch dispersing to the parasitized patch. As the number ofindividuals in the parasite-free patch increases, parasitismrate can be maintained stable at a high equilibrium level inthe parasite-prone patch.  相似文献   

19.
Game theory predicts that the evolutionarily stable level of root production is greater for plants grown with neighbours compared to plants grown alone, even when the available resources per plant are constant. This follows from the fact that for plants grown alone, new roots compete only with other roots on the same plant, whereas for multiple plants grown in a group, new roots can also compete with the roots of other plants, thereby potentially acquiring otherwise unavailable resources at their neighbours’ expense. This phenomenon, which results in plants grown with neighbours over-proliferating roots at the expense of above-ground biomass, has been described as a ‘tragedy of the commons’, and requires that plants can distinguish self from non-self tissues. While this game theoretical model predicts the evolutionarily stable strategies of individual plants, it has only been tested on average allocation patterns of groups of plants. This is problematic, because average patterns can appear to reflect a tragedy of the commons, even when none has occurred. In particular, assuming (1) a decelerating relationship between individual plant biomass and the amount of resources available, and (2) greater size inequality in plants grown with neighbours compared to plants grown alone (due to asymmetric competition), then plants grown with neighbours should, at least on average, be smaller than plants grown alone. This is a manifestation of ‘Jensen’s Inequality’, which states that for decelerating functions, the average value of the function is less than the function of the average value. We suggest that Jensen’s Inequality should serve as an appropriate null hypothesis for examining biologically-based explanations of changes in biomass allocation strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号