首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple niche‐based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density‐dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first‐year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density‐dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow‐growing and well‐defended species. Niche differentiation along the growth–survival trade‐off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed‐size variation and promote species coexistence through a tolerance–fecundity trade‐off.  相似文献   

2.
Seedlings are vulnerable to many biotic and abiotic agents, and studying seedling dynamics helps understand mechanisms of species coexistence. In this study, the relative importance of biotic neighbors and habitat heterogeneity to seedling survival was examined by generalized linear mixed models for 33 species in a spruce‐fir valley forest in northeastern China. The results showed that the relative importance of these factors varied with species and functional groups. Conspecific negative density dependence (CNDD) was important to the survival of Abies nephrolepis and Picea koraiensis seedling, whereas phylogenetic negative density dependence (PNDD) was critical to Pinus koraiensis and Betula platyphylla, as well as functional groups of tree, deciduous, and shade‐intolerant seedlings. For shrubs and Acer ukurunduense, habitat heterogeneity was significant. Despite of the significance of CNDD, PNDD, and habitat heterogeneity on seedling survival, large proportions of the total variance were not accounted for by the studied variables, suggesting the needs to examine the influences of other factors such as pests, diseases, herbivores, forest structure, species functional traits, and microclimatic conditions on seedling survival in the future.  相似文献   

3.
Classifying the biological traits of organisms can test conceptual frameworks of life‐history strategies and allow for predictions of how different species may respond to environmental disturbances. We apply a trait‐based classification approach to a complex and threatened group of species, scleractinian corals. Using hierarchical clustering and random forests analyses, we identify up to four life‐history strategies that appear globally consistent across 143 species of reef corals: competitive, weedy, stress‐tolerant and generalist taxa, which are primarily separated by colony morphology, growth rate and reproductive mode. Documented shifts towards stress‐tolerant, generalist and weedy species in coral reef communities are consistent with the expected responses of these life‐history strategies. Our quantitative trait‐based approach to classifying life‐history strategies is objective, applicable to any taxa and a powerful tool that can be used to evaluate theories of community ecology and predict the impact of environmental and anthropogenic stressors on species assemblages.  相似文献   

4.
Species with fast life‐histories typically prioritize current over future reproductive events, compared to species with slow life‐histories. These species therefore require greater energetic input into reproduction, and also likely have less time to realize their reproductive potential. Hence, behaviors that increase access to both resources and mating opportunities, at a cost of increased mortality risk, could coevolve with the pace of life‐history. However, whether this prediction holds across species, remains untested under standardized conditions. Here, we test how risky behaviors, which facilitate access to resources and mating opportunities (i.e., activity, boldness, and aggression), along with metabolic rate, coevolve with the pace of life‐history across 20 species of killifish that present remarkable divergences in the pace of life‐history. We found a positive association between the pace of life‐history and aggression, but interestingly not with other behavioral traits or metabolic rate. Aggression is linked to interference competition, and in killifishes is often employed to secure mates, while activity and boldness are more relevant for exploiting energetic resources. Our results suggest that the trade‐off between current and future reproduction plays a more prominent role in shaping mating behavior, while behaviors related to energy acquisition may be influenced by ecological factors.  相似文献   

5.
Local tree species diversity is maintained in part by conspecific negative density dependence (CNDD). This pervasive mechanism occurs in a variety of forms and ecosystems, but research to date has been heavily skewed toward tree seedling survival in tropical forests. To evaluate CNDD more broadly, we investigated how sapling growth rates were affected by conspecific adult neighbors in a fully mapped 25.6 ha temperate deciduous forest. We examined growth rates as a function of the local adult tree neighborhood (via spatial autoregressive modeling) and compared the spatial positioning of faster‐growing and slower‐growing saplings with respect to adult conspecific and heterospecific trees (via bivariate point pattern analysis). In addition, to determine whether CNDD‐driven variation in growth rates leaves a corresponding spatial signal, we extended our point pattern analysis to a static, growth‐independent comparison of saplings and the next larger size class. We found that negative conspecific effects on sapling growth were most prevalent. Five of the nine species that were sufficiently abundant for analysis exhibited CNDD, while only one species showed evidence of a positive conspecific effect, and one or two species, depending on the analysis, displayed heterospecific effects. There was general agreement between the autoregressive models and the point pattern analyses based on sapling growth rates, but point pattern analyses based on single‐point‐in‐time size classes yielded results that differed markedly from the other two approaches. Our work adds to the growing body of evidence that CNDD is an important force in temperate forests, and demonstrates that this process extends to sapling growth rates. Further, our findings indicate that point pattern analyses based solely on size classes may fail to detect the process of interest (e.g., neighborhood‐driven variation in growth rates), in part due to the confounding of tree size and age.  相似文献   

6.
Specialised natural enemies maintain forest diversity by reducing tree survival in a density‐ or distance‐dependent manner. Fungal pathogens, insects and mammals are the enemy types most commonly hypothesised to cause this phenomenon. Still, their relative importance remains largely unknown, as robust manipulative experiments have generally targeted a single enemy type and life history stage. Here, we use fungicide, insecticide and physical exclosure treatments to isolate the impacts of each enemy type on two life history stages (germination and early seedling survival) in three tropical tree species. Distance dependence was evident for five of six species‐stage combinations, with each enemy type causing distance dependence for at least one species stage and their importance varying widely between species and stages. Rather than implicating one enemy type as the primary agent of this phenomenon, our field experiments suggest that multiple agents acting at different life stages collectively contribute to this diversity‐promoting mechanism.  相似文献   

7.
Negative density‐dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant‐soil feedbacks. In field censuses of six 1‐ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant‐soil feedbacks that contribute to community‐level and population‐level compensatory trends in seedling survival.  相似文献   

8.
A life‐history trade‐off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged‐over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species‐specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed‐effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed‐effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade‐off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade‐off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments.  相似文献   

9.
In the present study, we analysed the habitat association of tree species in an old‐growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6‐ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10‐m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well‐scattered seed distribution via wind and bird dispersal, as well as conspecific density‐dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study.  相似文献   

10.
Life‐history theory posits that trade‐offs between demographic rates constrain the range of viable life‐history strategies. For coexisting tropical tree species, the best established demographic trade‐off is the growth‐survival trade‐off. However, we know surprisingly little about co‐variation of growth and survival with measures of reproduction. We analysed demographic rates from seed to adult of 282 co‐occurring tropical tree and shrub species, including measures of reproduction and accounting for ontogeny. Besides the well‐established fast–slow continuum, we identified a second major dimension of demographic variation: a trade‐off between recruitment and seedling performance vs. growth and survival of larger individuals (≥ 1 cm dbh) corresponding to a ‘stature–recruitment’ axis. The two demographic dimensions were almost perfectly aligned with two independent trait dimensions (shade tolerance and size). Our results complement recent analyses of plant life‐history variation at the global scale and reveal that demographic trade‐offs along multiple axes act to structure local communities.  相似文献   

11.
Comparative information on the composition and diversity in tree species associations in Miombo woodland is limited. This study assessed how tree species associations across forest reserves of Miombo woodland in Malawi varied in composition and diversity concerning site factors and resource use disturbances under co‐management versus government management. Eighty nested circular plots, randomly selected in ArcGIS, were sampled to record stem diameter at breast height (DBH) of tree species: 0.04 ha for stems 5–29.9 cm DBH and 0.16 ha for stems ≥30 cm DBH. The recorded 109 tree species grouped into communities and 14 sub‐communities, using stem counts by species in TWINSPAN analysis. Sub‐divisions to level 5 showed eigenvalues ≥0.3, symbolising the stability of sub‐divisions. North/South sub‐divisions related to site factors; historical/current resource use influenced differences at levels 3–5. Species importance differed, indicating few important species in each sub‐community. Brachystegia and Julbernardia species showed importance across sub‐communities while Uapaca sansibarica in government management. Disturbances stimulated high species diversity. Recommendations include the need for a policy review towards group‐felling mature stands to stimulate regeneration and selective thinning of suppressed stems in stand development stages to maintain species diversity, productive recovery, diverse resource use value, and monitoring of harvesting impacts.  相似文献   

12.
Several explanations for the persistence of tree–grass mixtures in savannas have been advanced thus far. In general, these either concentrate on competition‐based mechanisms, where niche separation with respect to limiting resources such as water lead to tree–grass coexistence, or demographic mechanisms, where factors such as fire, herbivory and rainfall variability promote tree–grass persistence through their dissimilar effects on different life‐history stages of trees. Tests of these models have been largely site‐specific, and although different models find support in empirical data from some savanna sites, enough dissenting evidence exists from others to question their validity as general mechanisms of tree–grass coexistence. This lack of consensus on determinants of savanna structure and function arises because different models: (i) focus on different demographic stages of trees, (ii) focus on different limiting factors of tree establishment, and (iii) emphasize different subsets of the potential interactions between trees and grasses. Furthermore, models differ in terms of the most basic assumptions as to whether trees or grasses are the better competitors. We believe an integration of competition‐based and demographic approaches is required if a comprehensive model that explains both coexistence and the relative productivity of the tree and grass components across the diverse savannas of the world is to emerge. As a first step towards this end, we outline a conceptual framework that integrates existing approaches and applies them explicitly to different life‐history stage of trees.  相似文献   

13.
Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density‐dependent mortality of conspecific seedlings (C‐NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper‐diversity in many tropical forests. A key question is whether fungal pathogen‐mediated C‐NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C‐NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species‐rich forests of South East Asia. We demonstrate species‐specific responses of seedlings to fungicide and density treatments, generating weak negative density‐dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen‐Connell mechanisms structure the plant communities of this globally important forest type.  相似文献   

14.
Intraspecific negative feedback effects, where performance is reduced on soils conditioned by conspecifics, are widely documented in plant communities. However, interspecific feedbacks are less well studied, and their direction, strength, causes, and consequences are poorly understood. If more closely related species share pathogens, or have similar soil resource requirements, plants may perform better on soils conditioned by more distant phylogenetic relatives. There have been few empirical tests of this prediction across plant life stages, and none of which attempt to account for soil chemistry. Here, we test the utility of phylogeny for predicting soil feedback effects on plant survival and performance (germination, seedling survival, growth rate, biomass). We implement a full factorial experiment growing species representing five families on five plant family‐specific soil sources. Our experiments exploit soils that have been cultured for over 30 years in plant family‐specific beds at Oxford University Botanic Gardens. Plant responses to soil source were idiosyncratic, and species did not perform better on soils cultured by phylogenetically more distant relatives. The magnitude and sign of feedback effects could, however, be explained by differences in the chemical properties of “home” and “away” soils. Furthermore, the direction of soil chemistry‐related plant‐soil feedbacks was dependent on plant life stage, with the effects of soil chemistry on germination success and accumulation of biomass inversely related. Our results (1) suggest that the phylogenetic distance between plant families cannot predict plant–soil feedbacks across multiple life stages, and (2) highlight the need to consider changes in soil chemistry as an important driver of population responses. The contrasting responses at plant life stages suggest that studies focusing on brief phases in plant demography (e.g., germination success) may not give a full picture of plant–soil feedback effects.  相似文献   

15.
The factors that control the assembly and composition of endophyte communities across plant hosts remains poorly understood. This is especially true for endophyte communities inhabiting inner tree bark, one of the least studied components of the plant microbiome. Here, we test the hypothesis that bark of different tree species acts as an environmental filter structuring endophyte communities, as well as the alternative hypothesis, that bark acts as a passive reservoir that accumulates a diverse assemblage of spores and latent fungal life stages. We develop a means of extracting high‐quality DNA from surface sterilized tree bark to compile the first culture‐independent study of inner bark fungal communities. We sampled a total of 120 trees, spanning five dominant overstorey species across multiple sites in a mixed temperate hardwood forest. We find that each of the five tree species harbour unique assemblages of inner bark fungi and that angiosperm and gymnosperm hosts harbour significantly different fungal communities. Chemical components of tree bark (pH, total phenolic content) structure some of the differences detected among fungal communities residing in particular tree species. Inner bark fungal communities were highly diverse (mean of 117–171 operational taxonomic units per tree) and dominated by a range of Ascomycete fungi living asymptomatically as putative endophytes. Together, our evidence supports the hypothesis that tree bark acts as an environmental filter structuring inner bark fungal communities. The role of these potentially ubiquitous and plant‐specific fungal communities remains uncertain and merits further study.  相似文献   

16.
Forest fragmentation is pervasive in tropical landscapes, and one pathway by which fragmentation may negatively impact populations is via edge effects. Early life‐stages are particularly important for species regeneration as they act as bottlenecks, but how edge effects may act differentially on different life‐stages is unknown. This study evaluated edge effects on multiple early life‐stages of a currently common animal‐dispersed, shade‐tolerant tree Tapirira mexicana (Anacardiaceae). The study was conducted in tropical premontane wet forest fragments in a highly deforested region of Costa Rica. The stages assessed were pre‐dispersal predation, primary dispersal, post‐dispersal predation, secondary dispersal, ex situ germination, in situ seed longevity, first and second year seedling abundance, second year seedling survivorship, and basal diameter growth. Results showed that impacts of edge effects were not equal across stages, but were limited to specific stages and times. One stage which may act as a bottleneck for species regeneration was pre‐dispersal predation. Over 60 percent of the seeds were predated by larvae, and predation was higher near the edge than interior habitat. Seeds lost viability within 10 d in the forest. Germination to first year seedling stage was also lower near edges, but such effect was eliminated within a year after that. Primary dispersal, seedling survivorship, and growth were not affected by proximity to edges, and both secondary dispersal and post‐dispersal predation were rare. This study demonstrates that current population abundance may not guarantee future species persistence and the importance of considering multiple life‐stages for a comprehensive assessment of forest fragmentation effects on species regeneration.  相似文献   

17.
Aims The evolutionary history and functional traits of species can illuminate ecological processes supporting coexistence in diverse forest communities. However, little has been done in decoupling the relative importance of these mechanisms on the turnover of phylogenetic and functional characteristics across life stages and spatial scales. Therefore, this study aims to estimate the contribution of environment and dispersal on the turnover of phylogenetic and functional diversity across life stages and spatial scales, in order to build a coherent picture of the processes responsible for species coexistence.  相似文献   

18.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

19.
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra‐annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.  相似文献   

20.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号