首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human microbiota, the prevention or promotion of invasions can be crucial to human health. Invasion outcomes, in turn, are impacted by the composition of resident communities and interactions of resident members with the invader. Here we study how interactions influence invasion outcomes in microbial communities, when interactions are primarily mediated by chemicals that are released into or consumed from the environment. We use a previously developed dynamic model which explicitly includes species abundances and the concentrations of chemicals that mediate species interaction. Using this model, we assessed how species interactions impact invasion by simulating a new species being introduced into an existing resident community. We classified invasion outcomes as resistance, augmentation, displacement, or disruption depending on whether the richness of the resident community was maintained or decreased and whether the invader was maintained in the community or went extinct. We found that as the number of invaders introduced into the resident community increased, disruption rather than augmentation became more prevalent. With more facilitation of the invader by the resident community, resistance outcomes were replaced by displacement and augmentation. By contrast, with more facilitation among residents, displacement outcomes shifted to resistance. When facilitation of the resident community by the invader was eliminated, the majority of augmentation outcomes turned into displacement, while when inhibition of residents by invaders was eliminated, invasion outcomes were largely unaffected. Our results suggest that a better understanding of interactions within resident communities and between residents and invaders is crucial to predicting the success of invasions into microbial communities.  相似文献   

2.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

3.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   

4.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

5.
The processes underlying plant invasions have been the subject of much ecological research. Understanding mechanisms of plant invasions are difficult to elucidate from observations, yet are crucial for ecological management of invasions. Hieracium lepidulum, an asteraceous invader in New Zealand, is a species for which several explanatory mechanisms can be raised. Alternative mechanisms, including competitive dominance, disturbance of resident vegetation allowing competitive release or nutrient resource limitation reducing competition with the invader are raised to explain invasion. We tested these hypotheses in two field experiments which manipulated competitive, disturbance and nutrient environments in pre‐invasion and post‐invasion vegetation. H. lepidulum and resident responses to environmental treatments were measured to allow interpretation of underlying mechanisms of establishment and persistence. We found that H. lepidulum differed in functional response profile from native species. We also found that other exotic invaders at the sites were functionally different to H. lepidulum in their responses. These data support the hypothesis that different invaders use different invasion mechanisms from one another. These data also suggest that functional differentiation between invaders and native resident vegetation may be an important contributing factor allowing invasion. H. lepidulum appeared to have little direct competitive effect on post‐invasion vegetation, suggesting that competition was not a dominant mechanism maintaining its persistence. There was weak support for disturbance allowing initial establishment of H. lepidulum in pre‐invasion vegetation, but disturbance did not lead to invader dominance. Strong support for nutrient limitation of resident species was provided by the rapid competitive responses with added nutrients despite presence of H. lepidulum. Rapid competitive suppression of H. lepidulum once nutrient limitation was alleviated suggests that nutrient limitation may be an important process allowing the invader to dominate. Possible roles of historical site degradation and/or invader‐induced soil chemical/microbial changes in nutrient availability are discussed.  相似文献   

6.
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron-scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores can be ‘public goods’ by delivering iron to individuals possessing matching receptors; but they can also be ‘public bads’ by withholding iron from competitors lacking these receptors. Accordingly, siderophores should either promote or impede invasion, depending on their effects on invader and resident growth. Using supernatant feeding and invasion assays, we show that invasion success indeed increased when the invader could use its siderophores to inhibit (public bad) rather than stimulate (public good) resident growth. Conversely, invasion success decreased the more the invader was inhibited by the residents’ siderophores. Our findings identify siderophores as a major driver of invasion dynamics in bacterial communities under iron-limited conditions.  相似文献   

7.
8.
Biological invasions severely impact native plant communities, causing dramatic shifts in species composition and the restriction of native species to spatially isolated refuges. Competition from resident species and the interaction between resource limitation and competition have been overlooked as mechanisms of community resistance in refugia habitats. We examined the importance of these factors in determining the resistance of California serpentine plant communities to invasion by three common European grasses, Avena barbata, Bromus diandrus, and Hordeum murinum. We added seeds of each of these grasses to plots subjected to six levels of resource addition (N, P, Ca, H2O, all resources together, and a no-addition control) and two levels of competition (with resident community present or removed). Resource limitation and competition had strong effects on the biomass and reproduction of the three invaders. The addition of all resources together combined with the removal of the resident community yielded individual plants that were fourfold to 20-fold larger and sixfold to 20-fold more fecund than plants from control plots. Competitor removal alone yielded invaders that were twofold to sevenfold larger and twofold to ninefold more fecund. N addition alone or in combination with other resources led to a twofold to ninefold increase in the biomass and fecundity of the invaders. No other resource alone significantly affected native or invader performance, suggesting that N was the key limiting resource during our experiment. We found a significant interaction between abiotic and biotic resistance for Bromus, which experienced increased competitive suppression in fertilized plots. The threefold increase in resident biomass with N addition was likely responsible for this result. Our results confirm that serpentine plant communities are severely N limited, which, in combination with competition from resident species, promotes the resistance of these systems to invasions. Our work suggests that better understanding the relative sensitivities of invaders and residents to the physical environment is critical to predicting how abiotic and biotic factors interact to determine community resistance.  相似文献   

9.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   

10.
Predicting whether microbial invaders will colonize an environment is critical for managing natural and engineered ecosystems, and controlling infectious disease. Invaders often face competition by resident microbes. But how invasions play out in communities dominated by facilitative interactions is less clear. We previously showed that growth medium toxicity can promote facilitation between four bacterial species, as species that cannot grow alone rely on others to survive. Following the same logic, here we allowed other bacterial species to invade the four-species community and found that invaders could more easily colonize a toxic medium when the community was present. In a more benign environment instead, invasive species that could survive alone colonized more successfully when the residents were absent. Next, we asked whether early colonists could exclude future ones through a priority effect, by inoculating the invaders into the resident community only after its members had co-evolved for 44 weeks. Compared to the ancestral community, the co-evolved resident community was more competitive toward invaders and less affected by them. Our experiments show how communities may assemble by facilitating one another in harsh, sterile environments, but that arriving after community members have co-evolved can limit invasion success.Subject terms: Microbial ecology, Microbial ecology  相似文献   

11.
Nico Eisenhauer  Stefan Scheu 《Oikos》2008,117(7):1026-1036
Invasions of natural communities by non‐indigenous species threaten native biodiversity and are currently rated as one of the most important global‐scale environmental problems. The mechanisms that make communities resistant to invasions and drive the establishment success of seedlings are essential both for management and for understanding community assembly and structure. Especially in grasslands, anecic earthworms are known to function as ecosystem engineers, however, their direct effects on plant community composition and on the invasibility of plant communities via plant seed burial, ingestion and digestion are poorly understood. In a greenhouse experiment we investigated the impact of Lumbricus terrestris, plant functional group identity and seed size of plant invader species and plant functional group of the established plant community on the number and biomass of plant invaders. We set up 120 microcosms comprising four plant community treatments, two earthworm treatments and three plant invader treatments containing three seed size classes. Earthworm performance was influenced by an interaction between plant functional group identity of the established plant community and that of invader species. The established plant community and invader seed size affected the number of invader plants significantly, while invader biomass was only affected by the established community. Since earthworm effects on the number and biomass of invader plants varied with seed size and plant functional group identity they probably play a key role in seedling establishment and plant community composition. Seeds and germinating seedlings in earthworm burrows may significantly contribute to earthworm nutrition, but this deserves further attention. Lumbricus terrestris likely behaves like a ‘farmer’ by collecting plant seeds which cannot directly be swallowed or digested. Presumably, these seeds are left in middens and become eatable after partial microbial decay. Increased earthworm numbers in more diverse plant communities likely contribute to the positive relationship between plant species diversity and resistance against invaders.  相似文献   

12.
A central and perhaps insurmountable challenge of invasion ecology is to predict which combinations of species and habitats most effectively promote and prevent biological invasions. Here, we integrate models of network structure and nonlinear population dynamics to search for potential generalities among trophic factors that may drive invasion success and failure. We simulate invasions where 100 different species attempt to invade 150 different food webs with 15–26 species and a wide range (0.06–0.32) of connectance. These simulations yield 11 438 invasion attempts by non-basal species, 47 per cent of which are successful. At the time of introduction, whether or not the invader is a generalist best predicts final invasion success; however, once the invader establishes itself, it is best distinguished from unsuccessful invaders by occupying a lower trophic position and being relatively invulnerable to predation. In general, variables that reflect the interaction between an invading species and its new community, such as generality and trophic position, best predict invasion success; however, for some trophic categories of invaders, fundamental species traits, such as having the centre of the feeding range low on the theoretical niche axis (for non-omnivorous and omnivorous herbivores), or the topology of the food web (for tertiary carnivores), best predict invasion success. Across all invasion scenarios, a discriminant analysis model predicted successful and failed invasions with 76.5 per cent accuracy for properties at the time of introduction or 100 per cent accuracy for properties at the time of establishment. More generally, our results suggest that tackling the challenge of predicting the properties of species and habitats that promote or inhibit invasions from food web perspective may aid ecologists in identifying rules that govern invasions in natural ecosystems.  相似文献   

13.
Theories linking diversity to ecosystem function have been challenged by the widespread observation of more exotic species in more diverse native communities. Few studies have addressed the underlying processes by dissecting how biotic resistance to new invaders may be shaped by the same environmental influences that determine diversity and other community properties. In grasslands with heterogeneous soils, we added invaders and removed competitors to analyze the causes of invasion resistance. Abiotic resistance was measured using invader success in the absence of the resident community. Biotic resistance was measured as the reduction in invader success in the presence of the resident community. Invaders were most successful where biotic resistance was lowest and abiotic resistance was highest, confirming the dominant role of biotic resistance. Contrary to theory, though, biotic resistance was highest where both species richness and functional diversity were lowest. In the multivariate framework of a structural equation model, biotic resistance was independent of community diversity, and was highest where fertile soils led to high community biomass. Seed predation slightly augmented biotic resistance without qualitatively changing the results. Soil‐related genotypic variation in the invader also did not affect the results. We conclude that in natural systems, diversity may be correlated with invasibility and yet have little effect on biotic resistance to invasion. More generally, the environmental causes of variation in diversity should be considered when examining the potential functional consequences of diversity.  相似文献   

14.
One of the earliest challenges for ecologists has been to study the impact of invasive species on microbial communities. Although bacteria are fundamental in biological processes, current knowledge on invasion effects by aquatic non-pathogenic bacteria is still limited. Using pure cultures of diverse planktonic bacteria as model organisms at two different carbon concentration levels, we tested the response of an assembled community to the invasion by Limnohabitans planktonicus, an opportunistic bacterium, successful in freshwaters. The invader, introduced at the early stationary growth phase of the resident community, caused a strong decrement of the abundance of the dominant species. This was due to competition for nutrients and a potential allelopathic interaction. Simultaneously, resident species formerly unable to successfully compete within the community, thus potentially exposed to competitive exclusion, increased their abundances. The overall result of the invasion was preservation of species diversity, the higher the lower was the substrate content available. Our study provides new insights into bacterial invasions, offering an alternative interpretation of invasions for community ecology.  相似文献   

15.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

16.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

17.
Jodi N. Price  Meelis Pärtel 《Oikos》2013,122(5):649-656
Synthesis We used meta‐analyses to examine experimental evidence that functional similarity between invaders and resident communities reduces invasion. We synthesized evidence from studies that experimentally added seed to resident communities in which the functional group composition had been manipulated. We found communities containing functionally similar resident species reduced invasion of forb but not grass invaders. However, experimental design dramatically influenced the results – with evidence for limiting similarity only found in artificially assembled communities, and not when studies used functional group removal from more ‘natural communities’. We suggest that functional group similarity plays a limited role in biotic resistance in established communities. The principle of limiting similarity suggests that species must be functionally different to coexist; based on the assumption that inter‐specific competition should be greatest between functionally similar species. There has been controversy over the generality of this assembly rule for plant communities with some studies finding evidence for limiting similarity and others not. One approach to testing this is to examine the ‘invasion’ success of species into communities in which the functional group composition has been manipulated. Using a meta‐analysis approach, we examined the generality of limiting similarity for plant communities based on published experimental studies. We asked – is establishment of an invading species less successful if it belongs to a functional group that is already present in the community compared to a community in which that functional group is absent? We explored separately colonisation (i.e. germination, establishment or seedling survival) and performance (i.e. biomass, cover or growth) of different functional groups (forbs and grasses) and experimental designs (removal experiments of more or less natural communities and synthetic‐assemblage experiments). We found that communities containing functionally similar resident species did reduce invader colonisation and performance of forb invaders, but did not reduce colonisation or performance of grass invaders. Evidence in support of limiting similarity was only detected in synthetic‐assemblage experiments and not when studies used functional group removal from ‘natural’ communities. Functional similarity is an important aspect of biotic resistance for forb invaders, but was only found in artificial communities. This has implications for restoration ecology especially when communities are built de novo. However, we suggest that limiting similarity plays a limited role in biotic resistance, because no evidence was detected in established communities.  相似文献   

18.
Wei Li  M. Henry H. Stevens 《Oikos》2012,121(3):435-441
The fluctuating resource hypothesis (FRH) proposes that fluctuations in resource supply can temporally reduce competitive pressure from resident species, thereby providing ephemeral opportunities for invading species. Although FRH has the potential to integrate many existing hypotheses regarding mechanisms of community invasibility, previous tests and evaluations of FRH were based on single trophic level, did not take the timing effect into account, and had difficulties in distinguishing the effects of resource pulses from other simultaneous processes. Here we test FRH in multi‐trophic aquatic microcosms by creating resource pulses, by controlling resource quantity, propagule supply and pulse recurrence frequency, and by manipulating the timing of pulses relative to the timing of the arrival of new species (i.e. invaders) to local communities. The novelty of our work lies in that we directly manipulate resource pulse timing relative to invader introduction events and thus demonstrate the importance of this timing effect for community invasibility. Our study supports FRH in general: invasion success was positively related to resource pulses, and invaders had strong performance in treatments receiving coincident pulses, although not all invaders gained more benefit when resources were supplied at large‐magnitude than supplied at continuous rates. Since many ecosystems worldwide are experiencing high rates of anthropogenic nutrient input and increasing rates of precipitation, these ecosystems are potentially more fragile and susceptible to invasion. More experiments across multiple ecosystem types are needed to help formulate a general theory of community invasibility.  相似文献   

19.
To assess potential effects of seed limitation, characteristics of invader species and characteristics of established plant communities on recruitment success, we conducted a split-plot experiment factorially combining three weeding treatments corresponding to increasing successional age (regular weeding相似文献   

20.
The timing of introduction of a new species into an ecosystem can be critical in determining the invasibility (i.e. the sensitivity to invasion) of a resident population. Here, we use an individual-based model to test how (1) the type of competition (symmetric versus asymmetric) and (2) seed masting influence the success of invasion by producing oscillatory dynamics in resident tree populations. We focus on a case where two species (one resident, one invader introduced at low density) do not differ in terms of competitive abilities. By varying the time of introduction of the invader, we show that oscillations in the resident population favour invasion, by creating “invasibility windows” during which resource is available for the invader due to transiently depressed resident population density. We discuss this result in the context of current knowledge on forest dynamics and invasions, emphasizing the importance of variability in population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号