首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary   We reviewed the literature on fauna in revegetation in Australian agricultural areas. Of 27 studies, 22 examined birds, with few studies focusing on other faunal groups (four to six studies for each remaining group) and nine examined multiple groups. Existing evidence suggests that revegetation provides habitat for many species of bird and some arboreal marsupials. Species richness of birds was greater in revegetated areas that were large, wide, structurally complex, old and near remnant vegetation. Bats, small terrestrial mammals, reptiles and amphibians did not appear to benefit significantly from revegetation in the short term. Evidence to date suggests that revegetation is not a good replacement of remnant vegetation for many species. Key information gaps exist in the faunal response to (i) revegetation as it ages; (ii) different structural complexities of revegetation; (iii) revegetation that is composed of indigenous vs. non-indigenous plant species; and (iv) revegetation that is in riparian vs. non-riparian locations. In addition, little is known on the value of revegetation for declining or threatened fauna, or of the composition of fauna in revegetation. There is a need to better understand the balance between quantity of revegetation in the landscape, and the quality or complexity of revegetation at the patch scale. Based on current evidence, we recommend revegetation be conducted in patches that are large, wide and structurally complex to maximize the benefits to fauna.  相似文献   

2.
Volunteer labour is often used for planting native seedlings for revegetation projects. The survival of such plantings is seldom monitored and reported. The overall survival of seedlings at three years of age was assessed for eight years of plantings established by nearly 15,000 volunteers in the Lower Cotter River catchment in the Australian Capital Territory. Mean survival was 66.8% across all years. We conclude that volunteers can be effectively integrated into large‐scale revegetation projects if they are well trained and organised.  相似文献   

3.
Summary Scattered trees, or ‘paddock trees’, are keystone structures, which provide multiple ecological values. However, they are in decline in many places. This has serious implications for species that use them, such as the vulnerable Superb Parrot (Polytelis swainsonii) of south‐eastern Australia. We outline three key aspects of the ecology, biology and distribution of the species that illustrate the implications of scattered tree decline. These are that (i) it depends on trees; (ii) it lives across agricultural landscapes; and (iii) it uses scattered tree landscapes dynamically in response to climate variation. We outline the dual challenge of maintaining populations of both scattered trees and the Superb Parrot over large scales and over the long term. Without urgent restoration action, a narrow bottleneck (where there are few mature trees) will make the long‐term future of the Superb Parrot precarious in these landscapes. We outline a vision for future landscapes that addresses this challenge, including the development of a form of Australian ‘wood‐pasture’. We suggest some ways that might be implemented at two scales. At the farm scale, we suggest (i) protecting what remnant vegetation we currently have; (ii) recruiting future large, old trees; (iii) sequentially setting aside land to ensure whole‐of‐farm tree regeneration; (iv) use of incentives to encourage restoration actions; and (v) using a revolving land fund to purchase and reorganize farms into economically and ecologically sustainable units. At the landscape scale, we suggest (i) the need for coordination of long‐term landscape restoration plans; (ii) the possible collaborative management of adjacent farms to ensure economic and ecological sustainability. We conclude that addressing the large‐scale and long‐term challenges of restoring scattered trees in landscapes occupied by the Superb Parrot could restore lost or diminished ecological services. This challenge illustrates the need for action at both the farm and the landscape scale that is planned over the short, medium and long term.  相似文献   

4.
Restoring degraded Australian landscapes through revegetation is a key concern of land holders, NGOs and government agencies. With the advent of climate change, it is increasingly important that revegetation activities take into consideration the species and provenance of plant materials to ensure that environmental plantings will be resilient to future climate conditions. A major strength of the past 30 years restoration programmes is the development of a distributed network of educated and experienced practitioners. We have recently invited stakeholders from among this network to participate in a process to cost‐effectively build Environmental Research Infrastructure – a nationally distributed network of restoration plantings that explore a broad range of research activities including a better understanding of the adaptive responses of different species and provenances. This would also facilitate long‐term monitoring of change and adaptation across Australia, providing a wealth of information to inform future conservation and restoration programmes.  相似文献   

5.
Community‐based ecological restoration (CBR) has been encouraged by government funding schemes worldwide to help reverse ecosystem degradation, although many observers have questioned their longer‐term outcomes. We investigated the ecological and social outcomes of community‐based revegetation projects in an urban context, using the case study of all CBR groups located within 25 km of the Brisbane CBD which had been funded during 1997–2008 by the Australian Government's Natural Heritage Trust program to undertake revegetation works and which were also available for interview (N = 9 groups). First we reviewed the funding allocation within the region. Second, we conducted rapid on‐ground assessments of vegetation outcomes at 10 project sites several years after works were completed, which showed that the detectable area of established revegetation averaged 75% of the area planned, and the achieved revegetation areas varied greatly, both in total and in relation to cost. Third, we undertook thematic analysis of semi‐structured interviews with key group members, revealing that groups viewed the NHT scheme's short‐term funding and lack of administrative flexibility as being largely incompatible with both quantitative monitoring (which groups did not prioritise) and longer‐term maintenance of sites for successful vegetation establishment. Interactions with local governments were considered important to success, but internally‐conflicting policies of local and state governments, together with unforeseen site disturbances, acted to limit the achievement of projects' revegetation goals. Volunteer involvement and motivation were an important part of groups' activities. Overall, these CBR projects achieved modest short term environmental benefits together with a range of social benefits. There is a need for new CBR models aimed at maximising both environmental and social outcomes.  相似文献   

6.
Abstract There is strong demand for information about the status of, and trends in, Australia's biodiversity. Almost inevitably, this demand for information has led to demand for a broad‐scale monitoring system. However, the decision to embark on a monitoring system should only be made once it has been established that a monitoring system is the optimal way to inform management. We stress the need to invest resources in assessing whether a monitoring system is necessary before committing resources to the design and implementation of the system. Current debate associated with the design of a biodiversity monitoring system has similarities to the debate within the range management profession in the early 1970s. The experience with range monitoring shows that large‐scale monitoring systems such as those being proposed will require considerable resources, recurrently expended into the distant future, but with only a limited ability to adapt to new demands. Those involved in any biodiversity monitoring system will need to understand the implications of investing in a long‐term monitoring programme. Monitoring sustainability will only be possible if the monitoring system is itself sustainable. We discuss a number of issues that need to be addressed before the system is at all sustainable. These attributes are a mix of biophysical, social and institutional attributes and highlight the view that monitoring systems of the type being suggested comprise an unusual mixture of attributes not found in typical scientific activity. The present paper is not a technical manual, but rather considers some of the design issues associated with designing and implementing large‐scale monitoring systems.  相似文献   

7.
Questions: What factors limit vegetation restoration of secondary bare saline‐alkaline patches (BSAP) in the Songnen grassland of northeast China? Is there any adaptive approach to promote revegetation in the shortest time possible and at a low cost? Location: Northeast China. Methods: Considering the climate, soil saline‐alkalization and available seed sources, a new approach was adopted to restore vegetation in BSAP, which were formed by the degradation of typical Leymus chinensis grasslands owing to long‐term overgrazing. The experimental treatments included no treatment (CK), fencing (F), fencing+inserting cornstalks (FS), fencing+inserting cornstalks+sowing L. chinensis (FSL) and fencing+inserting cornstalks+sowing Puccinellia chinampoensis (FSP). The assumptions behind inserting cornstalks were not only that they would create safe sites for initial revegetation but also that they would enhance seed input by trapping and containing the seeds from seed movement on the BSAP surface. Results: Seed bank shortage was an important factor limiting initial revegetation in BSAP; seed movement on the BSAP surface could provide the necessary seed source if it were contained by effective measures. Vegetation at the sites FS, FSL and FSP was restored well in terms of the above‐ground biomass and coverage. Inserted cornstalks acted as safe sites that enhanced the plant survival rate in BSAP; they also enhanced the ability to contain seed movement, thus providing a seed source for initial revegetation. Along with initial revegetation, tussocks around cornstalks can provide better safe sites, which in turn can accelerate subsequent vegetation restoration in BSAP. Conclusions: The approach entails the strategic use of diverse seed sources and the construction of safe sites with agricultural byproducts (cornstalks); therefore, it is a low‐cost method and can be used on a widespread scale. The results provide vigorous support in favor of vegetation restoration in BSAP and severely degraded grasslands in the region. In practice, this approach can be used in degraded ecosystems with compacted soil surfaces (including arid and salt‐affected soils) to promote revegetation in various regions.  相似文献   

8.
Alpine/subalpine environments are diverse systems that support many endemic species. Worldwide, these ecosystems are under threat from ski resort disturbances – even in areas broadly designated for biodiversity conservation. The effects of ski resorts on reptiles are largely unknown, making it difficult to implement effective conservation actions. Many ski resorts do not currently address the needs of reptiles, even those listed as threatened, in their management plans. If reptiles are to continue inhabiting ski resorts in Australia, strategies must be implemented that target their conservation. To begin to address this problem, we summarise current research investigating the effects of ski resorts on reptiles. Based on this information, we recommend strategies that will enhance the conservation of reptiles in areas affected by ski‐related disturbances. Suggested strategies include (i) restricting intensive disturbances to already highly modified areas of Australian ski resorts, (ii) avoiding disturbance of remaining native vegetation and structural complexity in ski resorts and (iii) re‐establishing structural complexity at highly modified sites through revegetation programmes, or through the cessation of mowing during peak reptile activity periods. While these strategies are designed to facilitate the persistence of reptiles in ski resorts, their long‐term success can only be evaluated by monitoring their effectiveness.  相似文献   

9.
One of Australia's leading on‐ground extension officers describes the successes and lessons learned in The Riverina's native revegetation movement over the 20–25 years – but warns of potential failure of current and future Australian revegetation programs if greater funding security is not delivered.  相似文献   

10.
In this article we test the long‐term dematerialization potential for Australia in terms of materials, energy, and water use as well as CO2 emissions by introducing concrete targets for major sectors. Major improvements in the construction and housing, transport and mobility, and food and nutrition sectors in the Australian economy, if coupled with significant reductions in the resource export sectors, would substantially improve the current material, energy, and emission intensive pattern of Australia's production and consumption system. Using the Australian Stocks and Flows Framework we model all system interactions to understand the contributions of large‐scale changes in technology, infrastructure, and lifestyle to decoupling the economy from the environment. The modeling shows a considerable reduction in natural resource use, while energy and water use decrease to a much lesser extent because a reduction in natural resource consumption creates a trade‐off in energy use. It also shows that trade and economic growth may continue, but at a reduced rate compared with a business‐as‐usual scenario. The findings of our modeling are discussed in light of the large body of literature on dematerialization, eco‐efficiency, and rebound effects that may occur when efficiency is increased. We argue that Australia cannot rely on incremental efficiency gains but has to undergo a sustainability transition to achieve a low carbon future to keep in line with the international effort to avoid climate change and resource use conflicts. We touch upon the institutional changes that would be required to guide a sustainability transition in the Australian economy, such as an emission trading scheme.  相似文献   

11.
In this paper, we develop a dynamic stock model and scenario analysis involving a bottom‐up approach to analyze copper demand in China from 2005 to 2050 based on government and related sectoral policies. The results show that in the short‐term, China's copper industry cannot achieve a completely circular economy without additional measures. Aggregate and per capita copper demand are both set to increase substantially, especially in infrastructure, transportation, and buildings. Between 2016 and 2050, total copper demand will increase almost threefold. Copper use in buildings will stabilize before 2050, but the copper stock in infrastructure and transportation will not yet have reached saturation in 2050. The continuous growth of copper stock implies that secondary copper will be able to cover just over 50% of demand in 2050, at best, even with an assumed recycling rate of 90%. Finally, future copper demand depends largely on the lifetime of applications. There is therefore an urgent need to prolong the service life of end‐use products to reduce the amount of materials used, especially in large‐scale applications in buildings and infrastructure.  相似文献   

12.
Past and continuing fragmentation and modification of ecosystems, as well as other threatening processes, cause ongoing biodiversity losses and species extinctions in Australia. At the same time as biodiversity declines, government funding for conservation and restoration is diminishing, leading to reduced action and greater reliance on private investment and community groups. In order to maintain and restore biodiverse ecosystems and the essential services they provide, both conservation of existing vegetation and habitat reconstruction are required. In this paper, we summarise the available data on planting area and cost from the Australian Government’s 20 Million Trees programme (2014–2020), the largest recent national‐scale revegetation incentives programme in Australia. We find that the current spatial scale of effort and investment in habitat reconstruction is insufficient to match the scale required to meet national conservation objectives. Furthermore, the funding rate ($/ha) and contracting arrangements are inadequate for the establishment of high‐quality self‐sustaining vegetation needed for the recovery of Australia’s threatened species and ecological communities. We estimate that the minimum amount of funding required for habitat reconstruction is at least five times higher than is provided for current national flagship programmes such as 20 Million Trees. We provide recommendations, designed to assist future habitat reconstruction programmes achieve their long‐term biodiversity objectives.  相似文献   

13.
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long‐term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long‐lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long‐term, large‐scale global change experiments with process studies and modeling. Long‐term global change manipulative experiments, especially in high‐priority ecosystems such as tropical forests and high‐latitude regions, are essential to maximize information gain concerning future states of the earth system. The long‐term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long‐term experiments and process studies together with information from long‐term observations, surveys, and space‐for‐time studies along environmental and biological gradients. Future research programs with coordinated long‐term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long‐term ecosystem dynamics in response to global change.  相似文献   

14.
Measuring wildlife responses to anthropogenic activities often requires long‐term, large‐scale datasets that are difficult to collect. This is particularly true for rare or cryptic species, which includes many mammalian carnivores. Citizen science, in which members of the public participate in scientific work, can facilitate collection of large datasets while increasing public awareness of wildlife research and conservation. Hunters provide unique benefits for citizen science given their knowledge and interest in outdoor activities. We examined how anthropogenic changes to land cover impacted relative abundance of two sympatric canids, coyote (Canis latrans), and red fox (Vulpes vulpes) at a large spatial scale. In order to assess how land cover affected canids at this scale, we used citizen science data from bow hunter sighting logs collected throughout New York State, USA, during 2004–2017. We found that the two species had contrasting responses to development, with red foxes positively correlated and coyotes negatively correlated with the percentage of low‐density development. Red foxes also responded positively to agriculture, but less so when agricultural habitat was fragmented. Agriculture provides food and denning resources for red foxes, whereas coyotes may select forested areas for denning. Though coyotes and red foxes compete in areas of sympatry, we did not find a relationship between species abundance, likely a consequence of the coarse spatial resolution used. Red foxes may be able to coexist with coyotes by altering their diets and habitat use, or by maintaining territories in small areas between coyote territories. Our study shows the value of citizen science, and particularly hunters, in collection of long‐term data across large areas (i.e., the entire state of New York) that otherwise would unlikely be obtained.  相似文献   

15.
The destruction and transformation of ecosystems by humans threatens biodiversity, ecosystem function, and vital ecosystem services. Ecological repair of ecosystems will be a major challenge over the next century and beyond. Restoration efforts to date have frequently been ad hoc, and site or situation specific. Although such small‐scale efforts are vitally important, without large‐scale visions and coordination, it is unlikely that large functioning ecosystems will ever be constructed by chance through the cumulative effects of small‐scale projects. Although the problems of human‐induced environmental degradation and the need for a solution are widely recognized, these issues have rarely been addressed on a sufficiently large‐scale basis. There are numerous barriers that prevent large‐scale ecological restoration projects from being proposed, initiated, or carried through. Common barriers include the “shifting baseline syndrome,” the scale and complexity of restoration, the long‐term and open‐ended nature of restoration, funding challenges, and preemptive constraint of vision. Two potentially useful approaches that could help overcome these barriers are stretch goals and backcasting. Stretch goals are ambitious long‐term goals used to inspire creativity and innovation to achieve outcomes that currently seem impossible. Backcasting is a technique where a desired end point is visualized, and then a pathway to that end point is worked out retrospectively. A case study from the Scottish Highlands is used to illustrate how stretch goals and backcasting could facilitate large‐scale restoration. The combination of these approaches offers ways to evaluate and shape options for the future of ecosystems, rather than accepting that future ecosystems are victims of past and present political realities.  相似文献   

16.
Long‐term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. In this paper, we briefly discuss five key values of such studies. These are: (1) quantifying ecological responses to drivers of ecosystem change; (2) understanding complex ecosystem processes that occur over prolonged periods; (3) providing core ecological data that may be used to develop theoretical ecological models and to parameterize and validate simulation models; (4) acting as platforms for collaborative studies, thus promoting multidisciplinary research; and (5) providing data and understanding at scales relevant to management, and hence critically supporting evidence‐based policy, decision making and the management of ecosystems. We suggest that the ecological research community needs to put higher priority on communicating the benefits of long‐term ecological studies to resource managers, policy makers and the general public. Long‐term research will be especially important for tackling large‐scale emerging problems confronting humanity such as resource management for a rapidly increasing human population, mass species extinction, and climate change detection, mitigation and adaptation. While some ecologically relevant, long‐term data sets are now becoming more generally available, these are exceptions. This deficiency occurs because ecological studies can be difficult to maintain for long periods as they exceed the length of government administrations and funding cycles. We argue that the ecological research community will need to coordinate ongoing efforts in an open and collaborative way, to ensure that discoverable long‐term ecological studies do not become a long‐term deficiency. It is important to maintain publishing outlets for empirical field‐based ecology, while simultaneously developing new systems of recognition that reward ecologists for the use and collaborative sharing of their long‐term data sets. Funding schemes must be re‐crafted to emphasize collaborative partnerships between field‐based ecologists, theoreticians and modellers, and to provide financial support that is committed over commensurate time frames.  相似文献   

17.
In Australian urban environments, revegetation and vegetation restoration are increasingly utilized conservation actions. Simple methods that help assess the utility of urban vegetation for bird species will help direct this effort for bird conservation purposes. We therefore examine whether ecological principles can be used to predict, a priori, the relative abundance of different bird species in urban vegetation. Our model proposes that a bird species will be in greater abundance where vegetation structure better reflects its foraging height requirements, and this relationship will be moderated by the landscape context of the patch. To quantify and test this model, we created an index to rank existing and revegetated urban vegetation sites in order of greatest expected abundance for each of 30 bird species. We tested this model, alongside two simpler models which consider landscape context and foraging height preferences alone, using bird abundance data from 20 woodland remnants and 20 revegetated sites in Brisbane, Australia. From these bird abundance data, we calculated the relative abundance of each species between the top‐ranking sites and lowest‐ranking sites. The model which incorporated both foraging height requirements and landscape context made predictions that were positively correlated with the data for 77% of species in remnant vegetation and 67% in revegetation. The results varied across species groups; for example, we achieved lower predictive success for canopy foraging species in the less mature revegetation sites. Overall, this model provided a reasonable level of predictive accuracy despite the diversity of factors which can influence species occurrence in urban landscapes. The model is generic and, subject to further testing, can be used to examine the effect of manipulating vegetation structure and landscape context on the abundance of different bird species in urban vegetation. This could provide a cost‐effective tool for directing urban restoration and revegetation efforts.  相似文献   

18.
Understanding the long‐term success of ecosystem restoration following invasive plant removal is challenging. Long‐term experiments are costly and slow to yield results, while management decisions must often be made immediately. Alternatively, retrospective studies can leverage contrasting historical management strategies to provide insight into long‐term vegetation responses. We used a retrospective approach to evaluate how management techniques and site characteristics affected re‐establishment of an invasive shrub, Rhamnus cathartica (common buckthorn), in midwestern North America. Following removal, buckthorn re‐establishes rapidly from resprouts and seeds, so follow‐up control is required but often lacking. We hypothesized that revegetating using native herbaceous seed after removing buckthorn increases herbaceous cover that competitively suppresses buckthorn regeneration, to a degree. We surveyed 46 management units at 24 sites. Revegetated units had higher herbaceous cover, lower buckthorn cover, and half the ratio of buckthorn:herbaceous cover compared with unseeded units. These effects, although considerable on average, were detected against a background of high variance. Seeding increased herbaceous cover and reduced buckthorn relative abundance more strongly on less acidic, more clayey soils and where follow‐up herbicide was not applied. Additional variability in revegetation impacts may have arisen from buckthorn resprouts having a head‐start on planted seeds. Only one site had both seeded and unseeded management units. This lack of blocking—a common challenge in retrospective studies—reduced statistical power. This investigation illustrates how retrospective studies can offer relatively inexpensive first assessments of long‐term effects of management techniques; for more rigorous inference, researchers can partner with managers to conduct long‐term experiments.  相似文献   

19.
Long‐term observational studies conducted at large (regional) spatial scales contribute to better understanding of landscape effects on population and evolutionary dynamics, including the conditions that affect long‐term viability of species, but large‐scale studies are expensive and logistically challenging to keep running for a long time. Here, we describe the long‐term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia) that has been conducted since 1991 in a large network of 4000 habitat patches (dry meadows) within a study area of 50 by 70 km in the Åland Islands in Finland. We explain how the landscape structure has been described, including definition, delimitation, and mapping of the habitat patches; methods of field survey, including the logistics, cost, and reliability of the survey; and data management using the EarthCape biodiversity platform. We describe the long‐term metapopulation dynamics of the Glanville fritillary based on the survey. There has been no long‐term change in the overall size of the metapopulation, but the level of spatial synchrony and hence the amplitude of fluctuations in year‐to‐year metapopulation dynamics have increased over the years, possibly due to increasing frequency of exceptional weather conditions. We discuss the added value of large‐scale and long‐term population studies, but also emphasize the need to integrate more targeted experimental studies in the context of long‐term observational studies. For instance, in the case of the Glanville fritillary project, the long‐term study has produced an opportunity to sample individuals for experiments from local populations with a known demographic history. These studies have demonstrated striking differences in dispersal rate and other life‐history traits of individuals from newly established local populations (the offspring of colonizers) versus individuals from old, established local populations. The long‐term observational study has stimulated the development of metapopulation models and provided an opportunity to test model predictions. This combination of empirical studies and modeling has facilitated the study of key phenomena in spatial dynamics, such as extinction threshold and extinction debt.  相似文献   

20.
The removal of grazing from the high country in NSW and almost 20 years of rehabilitation and revegetation works at a cost of almost $10 million has restored the alpine zone in Kosciuszko National Park to a near natural landscape. Few visitors today would realise that the summer alpine floral display which they now enjoy each summer, hides a once degraded and severely eroded landscape, devoid of many of the natural catchment values so important to the discharge of water to the rivers and to the Snowy Mountains Hydro‐electric Scheme. The rehabilitation of the alpine zone has contributed to and seen the recovery of many native species and communities, some nearing extinction during the grazing years, such that their conservation will be forever ensured. The rehabilitation and revegetation programme is one that the Soil Conservation Service officers and more recently National Parks staff can be justly proud. It was arguably the first and certainly at the time, the largest landscape restoration programme undertaken in NSW. Much was learnt from the programme through observation of long‐term natural processes, providing for recognition of the limitations within which the work had to be carried out. Working with nature and utilising sound ecological principles was essential to the success of this landscape restoration programme and to the long‐term conservation of the alpine zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号