首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of herbivory on plant invasions are broadly discussed, and many studies have led to widely debated theories. In particular, the effects of herbivores on pine invasion found in different studies vary; in some cases, they controlled their expansion, and in others, they promoted it. On the other hand, vulnerability to invasion by pines differs between community types. Sites with dunes and bare ground are the most heavily invaded, followed by grasslands, while shrublands and forests are least invaded. Because current evidence is mostly observational, some of the varying responses of pine invasions to herbivory should be examined further through replicated experiments. Here, we address experimentally the extent to which preference for the non‐native invasive Pinus contorta by domestic sheep (Ovis aries) depends on the vegetation type. We installed experimental enclosures within two adjacent communities, grassland and shrubland, and in each one, we planted seedlings of P. contorta Douglas and established a sheep density typically recommended for the study area. The number of browsed seedlings, the number and type of branches browsed per seedling, the reduction in height and probability of survival immediately after browsing period were recorded. The number of browsed seedlings and damage to the terminal bud were higher in grassland than in shrubland, while the number of browsed branches per seedling was higher in shrubland than grassland. The reductions in height and probability of survival immediately after browsing were similar in both communities. These results show that moderate levels of sheep herbivory could reduce 20% seedling survival in both communities; nevertheless, the damage patterns differ between them. The sheep browsed more substantial number of seedlings in grasslands than in shrublands. However, if sheep find the seedlings, they damage it more in shrublands. These results suggest that experimental studies comparing communities are important for pine invasion management.  相似文献   

2.
3.
荒漠草原沙漠化植物群落及土壤物理变化   总被引:4,自引:0,他引:4  
唐庄生  安慧  邓蕾  上官周平 《生态学报》2016,36(4):991-1000
沙漠化是草地退化最严重的形式之一。以空间代替时间的方法,通过对宁夏中北部荒漠草原沙漠化过程中植物群落特征和土壤物理特性的研究,探讨草地植物群落与土壤物理特性对沙漠化的响应机制。结果表明:(1)潜在沙漠化阶段草地以牛枝子、猪毛蒿、中亚白草为优势种,轻度沙漠化阶段草地以中亚白草、苦豆子为优势种,中度沙漠化阶段草地以狗尾草、虫实为优势种,重度沙漠化阶段草地以沙米、赖草、狗尾草为优势种,极度沙漠化阶段草地以沙米为优势种。(2)随着沙漠化程度的加剧草地植物群落生物量、Shannon-Wiener指数、丰富度指数、盖度均呈降低趋势,但轻度沙漠化阶段草地植被生物量比潜在沙漠化增加了23%。(3)草地沙漠化导致土壤容重和土壤粗砂粒含量增加,而土壤水分,土壤细砂粒和粘粉粒含量降低。荒漠草原沙漠化导致了土壤环境和植被明显退化,草地生产力明显降低。  相似文献   

4.
5.
6.
7.
Pine wilt disease (PWD) has caused significant Masson pine mortality in the Three Gorges reservoir region in central China. In this study, five uniform Masson pine stand types infected by PWD were selected and surveyed on slopes and aspects with similar environmental conditions. In sites that had been infected, soil bulk density was reduced, and the difference among the groups was statistically significant (< 0.05) at the 0–10 cm and 10–20 cm soil layers, but not at 20–40 cm. Other soil water‐related physical properties, excluding noncapillary porosity, significantly differed among the groups in all soil layers. Additionally, the values of available phosphorus, sodium, potassium, calcium, and magnesium were higher in the invaded stands, but the total nitrogen and organic matter contents were lower. Masson pine does not become reestablished following PWD‐induced mortality but is instead replaced by broad‐leaved tree species. Among the 19 examined environmental variables, five were found to be significantly related with the ordination of plant community structure: Masson pine stumps (MPS), K+, capillary water holding capacity (CWHC), capillary porosity (CP), and soil water content (SWC). Among these factors, the plant community structure was principally related to MPS and K+. The findings of this study show that the outbreak of PWD has impacted Masson pine forest soil properties and altered forest community composition. The disease is negatively related with the presence of Masson pine and positively associated with that of broad‐leaved tree species.  相似文献   

8.
9.
In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]‐only treatment than to those in the warming‐only treatment. In contrast to warming‐only experiments, both the combined and the [ CO2 ]‐only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]‐only treatment, possibly due to the warming‐induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less‐than‐additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long‐term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.  相似文献   

10.
Below‐ground interactions between soil microbial communities and plants play important roles in shaping plant community structure, but are currently poorly understood. Understanding these processes has important practical implications, including for restoration. In this study, we investigated whether soil microbes from remnant areas can aid the restoration of old‐fields, and whether soil microbes from an old‐field encourages further invasive establishment. In a glasshouse experiment, we measured growth and survival of two native grasses (Austrostipa nodosa and Rytidosperma auriculatum) and an invasive grass (Lolium rigidum) grown in sterile soil inoculated with whole soil from three locations: an old‐field, a remnant grassland, and a seed orchard planted with native grasses 7 years ago. Plants grown in sterile, non‐inoculated soil acted as controls. The orchard inoculant was included to test whether soil microbes from an area cultivated with native grasses induced plant responses similar to remnant areas. The remnant treatment resulted in the highest biomass and no mortality for R. auriculatum. All inoculant types increased the biomass of the invasive species equally. The native grass, A. nodosa, was the most sensitive to the addition of inoculum, whereas the invasive L. rigidum suffered very low mortality across all treatments. Overall, mortality was highest in the old‐field treatment at 42.9%. These results give insights into how soil microbes can affect community structure and dynamics, e.g. the high mortality of natives with old‐field inoculant may be one mechanism that allows invasive species to dominate. Poorer performance of native species with the orchard inoculant suggests it would not make a suitable replacement for remnant soil; therefore, more work is needed to understand the requirements of target species and their interactions before this technique can be exploited to maximum benefit.  相似文献   

11.
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.  相似文献   

12.
Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory‐reared colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae: Solenopsidini) to test the effects of metamorphosis, diet, and lipid storage on carbon and nitrogen stable isotope ratios. Effects of metamorphosis were examined in ant colonies maintained on a control diet of domestic crickets and sucrose solution. Effects of a diet shift were evaluated by adding a tuna supplement to select colonies. Effects of lipid content on stable isotopes were tested by treating worker ants with polar and non‐polar solvents. δ13C and δ15N values of larvae, pupae, and workers were measured by mass spectrometry on whole‐animal preparations. We found a significant effect of colony age on δ13C, but not δ15N; larvae, pupae, and workers collected at 75 days were slightly depleted in 13C relative to collections at 15 days (Δδ13C = ?0.27‰). Metamorphosis had a significant effect on δ15N, but not δ13C; tissues of each successive developmental stage were increasingly enriched in 15N (pupae, +0.5‰; workers, +1.4‰). Availability of tuna resulted in further shifts of about +0.6‰ in isotope ratios for all developmental stages. Removing fat with organic solvents had no effect on δ13C, but treatment with a non‐polar solvent resulted in enriched δ15N values of +0.37‰. Identifying regular patterns of isotopic enrichment as described here should improve the utility of stable isotopes in diet studies of insects. Our study suggests that researchers using 15N enrichment to assess trophic levels of an organism at different sites need to take care not to standardize with immature insect herbivores or predators at one site and mature ones at another. Similar problems may also exist when standardizing with holometabolous insects at one site and spiders or hemimetabolous insects at another site.  相似文献   

13.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

14.
采用碱液吸收法对锡林河流域一个半干旱典型草原群落的土壤呼吸进行了5个月的野外测定,并对其与气候因子和生物量之间的关系进行了分析.另选择了锡林河岸边的一个沼泽化草甸群落作为对比来研究土壤湿度和植被类型对土壤呼吸的影响.主要结果包括:1)两个群落土壤呼吸的季节动态基本一致,均出现了两个峰值,其中草原群落和草甸群落土壤呼吸速率的变化范围分别为312.8~1 738.9mgC@m-2@d-1和354.6~2 235.6 mg C@m -2@d-1.草甸群落的土壤呼吸速率明显高于草原群落,它们的日平均土壤呼吸速率分别为1 349.6 mg C@m-2@d-1和785.9mg C@m-2@d1;2)在草原群落中,土壤呼吸速率与土壤湿度的相关性比其与温度的关系更加显著,而在草甸群落正好相反,反映出这两种气候因子在不同生境中起着不同的作用.根据土壤呼吸与气温之间的同归关系外推出2001年生长季草原群落和草甸群落的土壤呼吸量分别为142.4 g C/m2和236.1 g C/m2;3)在草甸群落中,地上总生物量与土壤呼吸速率之间没有显著的相关关系,而地上部活体生物量与土壤呼吸速率之间则存有很显著的幂函数关系.在草原群落中,土壤呼吸速率与地上活体生物量或地上总生物量的相关性均很弱.  相似文献   

15.
Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plant genotype level and has not identified the key underlying genes. To address this gap, we used genome‐wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13 Populus genes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin‐like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the “genes” into “genes to ecosystems ecology”, this work enhances understanding of the molecular genetic mechanisms that underlie plant–insect associations and the consequences thereof for the structure of ecological communities.  相似文献   

16.
The use of the plant available moisture (PAM)/plant available nutrients (PAN) concept to compare savanna structure was examined using data from twenty Australian sites. Above-ground biomass was regressed on various combinations of seventeen different estimates of PAM (plant available moisture) and two estimates of PAN (plant available nutrients). The ratios of actual transpirational loss from the subsoil to potential evapotranspiration (PET), and total annual rainfall to PET, were most highly correlated with total biomass. Grass biomass is poorly predicted by PAM on its own, and requires inclusion of woody leaf biomass in the regression. PAN had little effect on total biomass, although it is likely to be important for other, functional aspects of vegetation. The woody : grass ratio is best predicted by an index involving the ratio of subsoil : topsoil moisture. For biomass comparisons the use of a detailed water-balance model to estimate PAM is not warranted.  相似文献   

17.
Global change is modifying species communities from local to landscape scales, with alterations in the abiotic and biotic determinants of geographic range limits causing species range shifts along both latitudinal and elevational gradients. An important but often overlooked component of global change is the effect of anthropogenic disturbance, and how it interacts with the effects of climate to affect both species and communities, as well as interspecies interactions, such as facilitation and competition. We examined the effects of frequent human trampling disturbances on alpine plant communities in Switzerland, focusing on the elevational range of the widely distributed cushion plant Silene acaulis and the interactions of this facilitator species with other plants. Examining size distributions and densities, we found that disturbance appears to favor individual Silene growth at middle elevations. However, it has negative effects at the population level, as evidenced by a reduction in population density and reproductive indices. Disturbance synergistically interacts with the effects of elevation to reduce species richness at low and high elevations, an effect not mitigated by Silene. In fact, we find predominantly competitive interactions, both by Silene on its hosted and neighboring species and by neighboring (but not hosted) species on Silene. Our results indicate that disturbance can be beneficial for Silene individual performance, potentially through changes in its neighboring species community. However, possible reduced recruitment in disturbed areas could eventually lead to population declines. While other studies have shown that light to moderate disturbances can maintain high species diversity, our results emphasize that heavier disturbance reduces species richness, diversity, as well as percent cover, and adversely affects cushion plants and that these effects are not substantially reduced by plant–plant interactions. Heavily disturbed alpine systems could therefore be at greater risk for upward encroachment of lower elevation species in a warming world.  相似文献   

18.
Although microbial communities have been shown to vary among plant genotypes in a number of experiments in terrestrial ecosystems, relatively little is known about this relationship under natural conditions and outside of select model systems. We reasoned that a salt marsh ecosystem, which is characterized by twice‐daily flooding by tides, would serve as a particularly conservative test of the strength of plant–microbial associations, given the high degree of abiotic regulation of microbial community assembly resulting from alternating periods of inundation and exposure. Within a salt marsh in the northeastern United States, we characterized genotypes of the foundational plant Spartina alterniflora using microsatellite markers, and bacterial metagenomes within marsh soil based on pyrosequencing. We found significant differences in bacterial community composition and diversity between bulk and rhizosphere soil, and that the structure of rhizosphere communities varied depending on the growth form of, and genetic variation within, the foundational plant S. alterniflora. Our results indicate that there are strong plant–microbial associations within a natural salt marsh, thereby contributing to a growing body of evidence for a relationship between plant genotypes and microbial communities from terrestrial ecosystems and suggest that principles of community genetics apply to this wetland type.  相似文献   

19.
Major shifts in the availability of palatable plant resources are of key relevance to the ecology of leaf‐cutting ants in human‐modified landscapes. However, our knowledge is still limited regarding the ability of these ants to adjust their foraging strategy to dynamic environments. Here, we examine a set of forest stand attributes acting as modulating forces for the spatiotemporal architecture of foraging trail networks developed by Atta cephalotes L. (Hymenoptera: Formicidae: Attini). During a 12‐month period, we mapped the foraging systems of 12 colonies located in Atlantic forest patches with differing size, regeneration age, and abundance of pioneer plants, and examined the variation in five trail system attributes (number of trails, branching points, leaf sources, linear foraging distance, and trail complexity) in response to these patch‐related variables. Both the month‐to‐month differences (depicted in annual trail maps) and the steadily accumulating number of trails, trail‐branching points, leaf sources, and linear foraging distance illustrated the dynamic nature of spatial foraging and trail complexity. Most measures of trail architecture correlated positively with the number of pioneer trees across the secondary forest patches, but no effects from patch age and size were observed (except for number of leaf sources). Trail system complexity (measured as fractal dimension; Df index) varied from 1.114 to 1.277 along the 12 months through which ant foraging was monitored, with a marginal trend to increase with the abundance of pioneer stems. Our results suggest that some leaf‐cutting ant species are able to generate highly flexible trail networks (via fine‐tuned adjustment of foraging patterns), allowing them to profit from the continuous emergence/recruitment of palatable resources.  相似文献   

20.
Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no‐migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (?14%) across latitudes in Europe and North America. Species richness and evenness of south‐latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and species richness for temperate wetland plant communities across continents, latitudes, and migration scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号