共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jason M. Kamilar 《American journal of physical anthropology》2009,139(3):382-393
Previous research has shown that both environmental and historical factors influence the taxonomic structure of animal communities; yet, the relative importance of these effects is not known for primates. Environmental characteristics shape the possible niches in a community, providing suitable habitats for some species and not others. Therefore, communities found in similar environments should display similar species compositions. Additionally, geography may be viewed as a surrogate for historical processes. For instance, as the geographic distance between communities increases, dispersal between sites is more limited, and the probability of historical vicariance increases. Therefore, communities in close proximity to each other should exhibit similar species compositions. The geographic location, environmental characteristics, and species composition of 168 primate communities were gathered from the literature. Canonical correspondence analyses were conducted to examine the relative effects of geographic distance and environmental variables on the taxonomic structure of communities. In addition, UPGMA cluster analyses were conducted to better visualize the taxonomic similarity of communities. Spatial variables were significant predictors of community structure in all regions. Rainfall patterns explained African, Malagasy, and Neotropical community structure. In addition, maximum temperature was also correlated with community structure in Madagascar and the Neotropics. No climatic variables predicted Asian community structure. These results demonstrate that both historical and environmental factors play a significant role in structuring modern primate communities; yet, the importance of environmental factors depend on the region in question. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
3.
4.
5.
Beta diversity can be measured in different ways. Among these, the total variance of the community data table Y can be used as an estimate of beta diversity. We show how the total variance of Y can be calculated either directly or through a dissimilarity matrix obtained using any dissimilarity index deemed appropriate for pairwise comparisons of community composition data. We addressed the question of which index to use by coding 16 indices using 14 properties that are necessary for beta assessment, comparability among data sets, sampling issues and ordination. Our comparison analysis classified the coefficients under study into five types, three of which are appropriate for beta diversity assessment. Our approach links the concept of beta diversity with the analysis of community data by commonly used methods like ordination and anova . Total beta can be partitioned into Species Contributions (SCBD: degree of variation of individual species across the study area) and Local Contributions (LCBD: comparative indicators of the ecological uniqueness of the sites) to Beta Diversity. Moreover, total beta can be broken up into within‐ and among‐group components by manova , into orthogonal axes by ordination, into spatial scales by eigenfunction analysis or among explanatory data sets by variation partitioning. 相似文献
6.
Laura A. Burkle;R. Travis Belote;Jonathan A. Myers; 《Ecography》2022,2022(3):e05986
Spatial variation in species interactions (interaction β-diversity) and its ecological drivers are poorly understood, despite their relevance to community assembly, conservation and ecosystem functioning. We investigated effects of wildfire severity on patterns and four proximate ecological drivers of interaction β-diversity in plant–bee communities across three localities in the northern Rocky Mountains (Montana, USA). Wildfires decreased interaction β-diversity but increased interaction frequency (number of visits) and richness (number of links). After controlling for interaction frequency and richness, standardized effect sizes of interaction β-diversity were highest following mixed-severity wildfires, intermediate following high-severity wildfires and lowest in unburned landscapes, suggesting that wildfire increases spatial aggregation of plant–bee interactions. Moreover, higher effect sizes in burned landscapes were largely determined by turnover in the species composition of both trophic levels rather than by interaction rewiring (spatial turnover in local species interactions not due to species turnover). The underrepresented level of rewiring indicated spatial consistency in post-disturbance patterns of interactions among co-occurring species. Together, our findings suggest that wildfire alters the β-diversity of mutualistic species interactions via linked assembly of plant–bee communities and provide insights into how environmental change alters complex networks of species interactions. 相似文献
7.
8.
Murilo S. Dias Thierry Oberdorff Bernard Hugueny Fabien Leprieur Céline Jézéquel Jean‐François Cornu Sébastien Brosse Gael Grenouillet Pablo A. Tedesco 《Ecology letters》2014,17(9):1130-1140
The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo‐drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo‐connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo‐disconnected basins. Palaeo‐connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo‐river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo‐connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity. 相似文献
9.
Philip S. Barton Maldwyn J. Evans Claire N. Foster Saul A. Cunningham Adrian D. Manning 《Austral ecology》2017,42(6):700-710
The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground‐dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small‐scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes. 相似文献
10.
Matthew C. Fitzpatrick Nathan J. Sanders Signe Normand Jens-Christian Svenning Simon Ferrier Aaron D. Gove Robert R. Dunn 《Proceedings. Biological sciences / The Royal Society》2013,280(1768)
A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance–decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change. 相似文献
11.
12.
《Insect Conservation and Diversity》2018,11(2):174-184
- Our objectives were to assess how turnover and nestedness contribute to beta‐diversity patterns of the Zygoptera in Amazonian streams, and to relate these components of beta diversity to environmental, spatial and biogeographic predictors. Our first hypothesis is that the turnover is the most important component of beta‐diversity patterns due to the historical isolation of all or part of the areas located in the interfluves of the major Amazonian rivers. Our second hypothesis is that the interaction between environmental conditions and the area of endemism (biogeography) would be the most important predictor of beta‐diversity patterns.
- To test these hypotheses, we compiled data on the Zygoptera communities from 172 Amazonian streams. We used three sets of predictor variables: (i) environmental variables, (ii) area of endemism (biogeographic) and (iii) spatial filters.
- The turnover explained 99.36% of the beta diversity, corroborating our first hypothesis. Together, environmental and biogeographic variables were the best predictors of beta‐diversity patterns. For turnover, however, the biogeographic variables were the best predictors, contrary to our second hypothesis.
- We found high gamma diversity, but low alpha diversity in the Zygoptera communities. This paradox is explained by the high turnover among sites within the study landscape. This pattern of diversity is related to both historical biogeographic factors and the spatial structuring of environmental conditions in the Amazon region. In the light of our results (high turnover and beta diversity), and their correspondence with areas of endemism, adequate conservation of Amazonian Zygoptera diversity will depend on the establishment of so‐called mega‐reserves throughout the major Amazonian interfluves and, whenever possible, in the areas with adequate environmental conditions for the greatest possible number of species, otherwise, most species may be at a constant risk of extinction.
13.
14.
15.
16.
Gabriel Marcacci Catrin Westphal Vikas S. Rao Shabarish Kumar S. K. B. Tharini Vasuki V. Belavadi Nils Nölke Teja Tscharntke Ingo Grass 《Ecology letters》2023,26(11):1951-1962
Urbanization is a major driver of biodiversity change but how it interacts with spatial and temporal gradients to influence the dynamics of plant–pollinator networks is poorly understood, especially in tropical urbanization hotspots. Here, we analysed the drivers of environmental, spatial and temporal turnover of plant–pollinator interactions (interaction β-diversity) along an urbanization gradient in Bengaluru, a South Indian megacity. The compositional turnover of plant–pollinator interactions differed more between seasons and with local urbanization intensity than with spatial distance, suggesting that seasonality and environmental filtering were more important than dispersal limitation for explaining plant–pollinator interaction β-diversity. Furthermore, urbanization amplified the seasonal dynamics of plant–pollinator interactions, with stronger temporal turnover in urban compared to rural sites, driven by greater turnover of native non-crop plant species (not managed by people). Our study demonstrates that environmental, spatial and temporal gradients interact to shape the dynamics of plant–pollinator networks and urbanization can strongly amplify these dynamics. 相似文献
17.
18.
YE Stuart JB Losos AC Algar 《Proceedings. Biological sciences / The Royal Society》2012,279(1744):4071-4077
Many oceanic islands are notable for their high endemism, suggesting that islands may promote unique assembly processes. However, mainland assemblages sometimes harbour comparable levels of endemism, suggesting that island biotas may not be as unique as is often assumed. Here, we test the uniqueness of island biotic assembly by comparing the rate of species turnover among islands and the mainland, after accounting for distance decay and environmental gradients. We modelled species turnover as a function of geographical and environmental distance for mainland (M-M) communities of Anolis lizards and Terrarana frogs, two clades that have diversified extensively on Caribbean islands and the mainland Neotropics. We compared mainland-island (M-I) and island-island (I-I) species turnover with predictions of the M-M model. If island assembly is not unique, then the M-M model should successfully predict M-I and I-I turnover, given geographical and environmental distance. We found that M-I turnover and, to a lesser extent, I-I turnover were significantly higher than predicted for both clades. Thus, in the first quantitative comparison of mainland-island species turnover, we confirm the long-held but untested assumption that island assemblages accumulate biodiversity differently than their mainland counterparts. 相似文献
19.
Andrés Baselga 《Global Ecology and Biogeography》2012,21(12):1223-1232
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography, 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity. 相似文献
20.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation. 相似文献