首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.  相似文献   

2.
Aims Why invasive plants are more competitive in their introduced range than native range is still an unanswered question in plant invasion ecology. Here, we used the model invasive plant Solidago canadensis to test a hypothesis that enhanced production of allelopathic compounds results in greater competitive ability of invasive plants in the invaded range rather than in the native range. We also examined the degree to which the allelopathy contributes increased competitive ability of S. canadensis in the invaded range.Methods We compared allelochemical production by S. canadensis growing in its native area (the USA) and invaded area (China) and also by populations that were collected from the two countries and grown together in a 'common garden' greenhouse experiment. We also tested the allelopathic effects of S. canadensis collected from either the USA or China on the germination of Kummerowia striata (a native plant in China). Finally, we conducted a common garden, greenhouse experiment in which K. striata was grown in monoculture or with S. canadensis from the USA or China to test the effects of allelopathy on plant–plant competition with suitable controls such as adding activated carbon to the soil to absorb the allelochemicals and thereby eliminating any corresponding allopathic effects.Important findings Allelochemical contents (total phenolics, total flavones and total saponins) and allelopathic effects were greater in S. canadensis sampled from China than those from the USA as demonstrated in a field survey and a common garden experiment. Inhibition of K. striata germination using S. canadensis extracts or previously grown in soil was greater using samples from China than from the USA. The competitive ability of S. canadensis against K. striata was also greater for plants originating from China than those from the USA. Allelopathy could explain about 46% of the difference. These findings demonstrated that S. canadensis has evolved to be more allelopathic and competitive in the introduced range and that allelopathy significantly contributes to increased competitiveness for this invasive species.  相似文献   

3.
Ervin  Gary N.  Wetzel  Robert G. 《Plant and Soil》2003,256(1):13-28
Allelochemical interactions among aquatic macrophytes and between macrophytes and attached microbial assemblages (epiphyton) influence a number of ecological processes. The ecological importance of these interactions, however, is poorly understood; we hypothesize that paucity has resulted, in part, from (1) a narrow focus on exploration for herbicidal plant products from aquatic macrophytes, (2) the difficulties in distinguishing resource competition from allelopathic interference, and (3) a predominance of approaching aquatic allelopathy from a terrestrial perspective. Based upon recent thorough investigations of allelopathy among aquatic vascular plants, chemical compounds that influence competitive interactions among littoral organisms are amphiphilic compounds that tend to remain near the producing organism (e.g., polyphenolic compounds and volatile fatty acids). Production of these compounds may be influenced by relative availability of nutrients (particularly phosphorus and nitrogen), inorganic carbon, and light. Macrophyte strategies of clonal reproduction, in an effort to persist in these highly productive and competitive habitats, have contributed to reduced reliance upon sexual reproduction that is correlated with allelopathic autotoxicity among several dominant wetland plant species. Although few studies document the importance of allelochemical interactions in the wetland and littoral zones of aquatic ecosystems, abundant evidence supports the potential for significant effects on competition and community structure; effects of altered nutrient ratios and availability on plant chemical composition; and resultant effects on trophic interactions, particularly suppression of herbivory, competitive attached algae and cyanobacteria, and heterotrophic utilization of organic matter by bacteria and fungi.  相似文献   

4.
We chose four species of freshwater phytoplankton: the chlorophyceans Ankistrodesmus falcatus, Chlamydomonas reinhardtii and Selenastrum capricornutum, and the cyanobacteria Oscillatoria sp. in order to study their competitive abilities for nitrate and their allelopathic properties. We parameterized models of nitrate uptake and growth with laboratory experiments. According to them, the species were ranked (from the best to the worst competitors): S. capricornutum, C. reinhardtii, A. falcatus and Oscillatoria sp. C. reinhardtii and Oscillatoria sp. were previously reported as allelopathic. In the present work, Oscillatoria sp. was allelopathic only against A. falcatus. However, none of our species was sensitive to C. reinhardtii. Additionally, we found an unknown allelopathic effect of A. falcatus against Oscillatoria sp. Our findings point out the high specificity of allelopathic interactions. With these data, we constructed a model of interspecific competition for nitrate, including allelopathic interactions. By performing model simulations, we studied how three factors influence the outcome of competition: relative abundance of competing species, resistance to allelopathy, and nitrate concentration. Our simulations showed that the initial ratio of species abundances will significantly determine the outcome of competition. If the worst competitor was the allelopathic species, the more it needs to outnumber the competing species, unless it is very sensitive to allelopathy (not defended). Nitrate has an important influence, showing a non-intuitive outcome of competition experiments at low nitrate concentrations, where the worst competitor (allelopathic species) wins competition in the majority of cases, whereas at intermediate concentrations, the better competitor dominates except for unfavorable ratios of abundances. With the increased amounts of nitrate, conditions again favor the worst competitor (the stronger allelopathic species). Despite the potential for two species coexistence showed by previous theoretical analysis of systems was similar to ours, our simulations did not detect this outcome. We hypothesized that this is due to the strong allelopathic effect of Oscillatoria sp.  相似文献   

5.
Some plants use allelopathy to compete against neighbouring plants, and the ability to induce allelopathic compound production in response to competition is hypothesized to be adaptive, as plants can save costs of metabolite production in the absence of competitors. However, whether plants induce allelopathy has rarely been explored so far. We studied the inducibility of polyacetylenes – putative allelopathic compounds in Solidago altissima – in response to competition. Polyacetylenes were found in natural soil surrounding S. altissima patches within the range of concentration known to inhibit competitor growth. Individual S. altissima plants with higher polyacetylene concentration in roots suppressed the growth of the competitor plants more, suggesting that root polyacetylene levels proximate plants’ allelopathic capacity. Competition induced polyacetylenes in a context‐dependent manner: Whereas introduced Japanese and Australian populations of S. altissima had higher constitutive concentration of polyacetylenes than the native North American populations, inducibility was observed only in Australian plants, where the population is still at an early stage of invasion. Also, induction became more prominent under nutrient depletion, where enhanced allelopathy may be particularly beneficial for suppressing a competitor's exploitative capacity. Finally, we found weak evidence for a tradeoff between constitutive and induced polyacetylenes. The observed patterns suggest that allelopathic plants could respond to competition by inducing allelochemical production, but the benefit of such plasticity may vary across time and space. Shifts in competitor communities in introduced range over time may shape plant's plastic responses to competition, while variation in resource availability may alter competitive environment to influence the degree to which plants induce allelopathy.  相似文献   

6.
It has been hypothesized that allelopathy can prevent competitive exclusion and promote phytoplankton diversity in aquatic ecosystems, where numerous species coexist on a limited number of resources. However, experimental proof‐of‐principle is not available to support this hypothesis. Here we present the first experimental evidence to support this hypothesis by demonstrating that allelopathy promotes the coexistence of two phytoplankton species, Ankistrodesmus falcatus and Oscillatoria sp., that compete for a single limiting nutrient. By performing long‐term competition experiments in nitrate‐limited continuous cultures, and by describing the population dynamics using a mechanistic model, we demonstrate that when allelopathy comes into play, one of the following outcomes is possible depending on the relative initial abundances of the species: dominance of the stronger competitor for nitrate (the non‐allelopathic species), oscillatory coexistence, or dominance of the weaker competitor (the allelopathic species). Our model analysis revealed that sustained oscillatory coexistence of the two species would be a common outcome of this experiment. Our study confirms for the first time, based on laboratory experiments combined with mechanistic models, that allelopathy can alter the predicted outcome of inter‐specific competition in a nutrient‐limited environment and increase the potential for the coexistence of more species than resources, thereby contributing to the identification of endogenous mechanisms that explain the extreme diversity of phytoplankton communities.  相似文献   

7.
Crop competition and allelopathy are two cultural control options for possible inclusion in cropping systems. This research aimed to identify superior allelopathic canola genotypes through a two-year field study. First year screening results of 312 diverse Brassica genotypes showed genotypes differed significantly in their ability to suppress weed infestations. Crop plant height was correlated with the competitive ability of several genotypes, while other genotypes showed good weed-suppressive ability despite being short. Thirty-six of the genotypes grown in the field had been previously assessed for their allelopathic ability to inhibit the growth of annual ryegrass (Lolium rigidum) seedlings using an in vitro technique. The highly allelopathic genotypes: Av-opal, Sardi603, Rivette and Atr-beacon performed well against annual ryegrass in the laboratory and also against other species, including Capsella bursa-pastoris, Sisymbrium orientale and Hordeum leporinum in the field. The weakly allelopathic Barossa and X-06-6-3725 genotypes performed poorly both in the laboratory studies and in the field. The following year, field testing of selected genotypes at two sowing dates further suggested that the most allelopathic genotypes in the laboratory bioassay were generally those that suppressed weed numbers and their biomass in the field. The late sowing time increased the natural weed pressure leading to a decrease in both canola grain yield and quality. Many of the highly allelopathic canola genotypes, which caused low weed populations in the field, had relatively low grain yield. This suggests that the allelopathic trait is independent of local adaptation and yields potential under weed-free conditions. Ideally, cultivars with both high allelopathy and high competitive ability would be most useful to help farmers maximise yield and control weeds. Selection for allelopathy in canola shows potential as a future non-chemical weed control option and requires further investigation.  相似文献   

8.
Ecological interactions between different species are not fixed, but they may depend, at least to some extent, on the particular genotypes involved as well as on the environmental conditions experienced by previous generations. We used a set of natural genotypes of Arabidopsis thaliana , that previously experienced contrasting nutrient and herbivory conditions, to test for the influences of genetic variation and maternal effects on competitive interactions between Arabidopsis and the weedy annuals Anagallis arvensis and Senecio vulgaris . We used activated carbon to discriminate between resource competition and allelopathy components of plant-plant interactions. There was a clear competitive hierarchy: Senecio > Arabidopsis > Anagallis . Although we found no evidence for allelopathic potential of Arabidopsis , our results indicate that both Anagallis and Senecio exerted negative (direct or indirect) allelopathic effects on Arabidopsis . There were significant differences among Arabidopsis genotypes in their competitive effects on both neighbor species, as well as in their response to competition. Maternal environments significantly influenced not only the growth and fitness of Arabidopsis itself, but also its competitive effect on Anagallis . We found, however, no evidence that maternal environments affected the competitive effect on Senecio or overall competitive response of Arabidopsis . Generally, resource competition played a greater role than allelopathy, and genotype effects were more important than maternal effects. Our study demonstrates that ecological interactions, such as plant competition, are complex and multi-layered, and that, in particular, the influence of genetic variation on interactions with other species should not be overlooked.  相似文献   

9.
Allelopathy is often treated as an innate characteristic of a species rather than a phenotypically plastic trait that can vary with environmental conditions. Lianas are a highly competitive, phenotypically plastic life form that typically occur in both shaded and unshaded environments. As such, we hypothesized that temperate lianas may conditionally change allocation to allelopathic chemicals in response to light availability though the expected direction of change is unclear. Shading may reduce resource availability and therefore reduce allocation to allelochemicals, induce allelopathy as a competitive mechanism, or may not be related to allelopathy. To test the conditionality of allelopathy, sun and shade leaves of five common liana species (Toxicodendron radicans, Parthenocissus quinquefolia, Celastrus orbiculatus, Lonicera japonica, and Vitis vulpina) were collected from a young deciduous forest in New Jersey, USA, and tested with laboratory bioassays to detect allelopathic potential. All liana species showed allelopathic potential, and three species exhibited induction of increased allelopathic potential in shaded environments. The two species that were not shade induced are late successional lianas that persist for long periods in forest canopies. In contrast, the inducible lianas were early successional species that typically decline with canopy closure. This research indicates that lianas have the potential to be allelopathic and allelopathic potential conditionally responds to shading only for species that would normally be excluded from the forest canopy. As early successional lianas are present throughout forest regeneration in a range of light environments, allelopathic plasticity may increase their success by differentially allocating resources based on environmental conditions.  相似文献   

10.
Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is supposed to be one of the mechanisms that contribute to the stabilisation of clear-water states in shallow lakes. The relevance of this process at ecosystem level, however, is debated because in situ evidence is difficult to achieve. Our literature review indicates that allelopathically active species such as Myriophyllum, Ceratophyllum, Elodea and Najas or certain charophytes are among the most frequent submerged macrophytes in temperate shallow lakes. The most common experimental approach for allelopathic interference between macrophytes and phytoplankton has been the use of plant extracts or purified plant compounds. Final evidence, however, requires combination with more realistic in situ experiments. Such investigations have successfully been performed with selected species. In situ allelopathic activity is also influenced by the fact that phytoplankton species exhibit differential sensitivity against allelochemicals both between and within major taxonomic groups such as diatoms, cyanobacteria and chlorophytes. In general, epiphytic species apparently are less sensitive towards allelochemicals than phytoplankton despite living closely attached to the plants and being of key importance for macrophyte growth due to their shading. Light and nutrient availability potentially influence the sensitivity of target algae and cyanobacteria. Whether or not additional stressors such as nutrient limitation enhance or dampen allelopathic interactions still has to be clarified. We strongly propose allelopathy as an important mechanism in the interaction between submerged macrophytes and phytoplankton in shallow lakes based on the frequent occurrence of active species and the knowledge of potential target species. The role of allelopathy interfering with epiphyton development is less well understood. Including further levels of complexity, such as nutrient interference, grazing and climate, will extend this ecosystem-based view of in situ allelopathy.  相似文献   

11.
Abstract

Allelopathy is defined as the suppression of any aspect of growth and/or development of one plant by another through the release of chemical compounds. Although allelopathic interference has been demonstrated many times using in vitro experiments, few studies have clearly demonstrated allelopathy in natural settings. This difficulty reflects the complexity in examining and demonstrating allelopathic interactions under field conditions. In this paper we address a number of issues related to the complexity of allelopathic interference in higher plants: These are: (i) is a demonstrated pattern or zone of inhibition important in documenting allelopathy? (ii) is it ecologically relevant to explain the allelopathic potential of a species based on a single bioactive chemical? (iii) what is the significance of the various modes of allelochemical release from the plant into the environment? (iv) do soil characteristics clearly influence allelopathic activity? (v) is it necessary to exclude other plant interference mechanisms?, and (vi) how can new achievements in allelopathy research aid in solving problems related to relevant ecological issues encountered in research conducted upon natural systems and agroecosystems? A greater knowledge of plant interactions in ecologically relevant environments, as well as the study of biochemical pathways, will enhance our understanding of the role of allelopathy in agricultural and natural settings. In addition, novel findings related to the relevant enzymes and genes involved in production of putative allelochemicals, allelochemical persistence in the rhizosphere, the molecular target sites of allelochemicals in sensitive plant species and the influence of allelochemicals upon other organisms will likely lead to enhanced utilization of natural products for pest management or as pharmaceuticals and nutraceuticals. This review will address these recent findings, as well as the major challenges which continue to influence the outcomes of allelopathy research.  相似文献   

12.
Secondary compounds can contribute to the success of non‐native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary compounds of non‐native plant species are stronger than those of natives. This may be explained by other factors, besides plant origin, that affect the potential of plant secondary compounds. We tested how plant origin, phylogeny, growth strategy and stoichiometry affected the allelopathic potential of 34 aquatic plants. The allelopathic potential was quantified using bioassays with the cyanobacterium Dolichospermum flos‐aquae. The allelopathic potential showed a strong phylogenetic signal, but was similar for native and non‐native species. Growth strategy was important, and emergent plants had twice the allelopathic potential as compared to submerged plants. Furthermore, the allelopathic potential was positively correlated to the foliar carbon‐to‐phosphorus (C:P) and total phenolic content. We conclude that eudicot plant species with an emergent growth strategy and high plant C:P ratio exhibit a high allelopathic potential. Unless non‐native plant species match this profile, they generally have a similar allelopathic potential as natives.  相似文献   

13.
1. Most studies on zooplankton responses to acidification have focused on clearwater lakes with a dramatic acidification history. The role of dissolved organic carbon (DOC) in moderating zooplankton responses to acidification in naturally acidic, dystrophic lakes is less well understood and is partially impeded by a lack of baseline data. 2. Cladocera leave identifiable remains preserved in lake sediments that can be used to provide information on pre‐industrial species assemblages and their responses to environmental stressors such as acidification. Therefore, we used palaeolimnological approaches to track cladoceran assemblage responses to acidification since c.1850 (inferred from sedimentary diatom assemblages) in three acidified lakes in Kejimkujik National Park (Nova Scotia, Canada) that differ markedly in DOC content. These include two highly dystrophic lakes (Kejimkujik and Pebbleogittch lakes), and one clearwater lake (Beaverskin Lake). 3. In dystrophic Pebbleogittch Lake, an increase in the acid‐tolerant, jelly‐clad, pelagic taxon Holopedium glacialis occurred coincident with diatom‐inferred pH (DI‐pH) declines, but no other notable cladoceran assemblage shifts occurred. Similarly, Cladocera assemblages did not appear to respond to lakewater acidification in dystrophic Kejimkujik Lake. 4. In contrast, in the clearwater Beaverskin Lake, several observed shifts in cladoceran assemblage corresponded to DI‐pH declines, including an increase in the proportion of littoral taxa and an increase in Hill’s N2 species diversity. This may indicate increased water clarity as a result of acidification‐related decreases in DOC, which may have enhanced growth of emergent aquatic macrophytes and improved visibility for planktivorous fish, leading to increased predation on pelagic taxa. Species shifts within the littoral assemblage of Beaverskin Lake may reflect the differing tolerances of littoral taxa to low pH and aluminium toxicity. 5. Overall, our results suggest that cladoceran assemblages in naturally acidic, dystrophic lakes may be resilient against additional pH declines related to industrial emissions of acidifying agents, as dystrophic lakes are less vulnerable to increased aluminium toxicity and acidification‐induced increases in water clarity and often have a pre‐industrial cladoceran assemblage already adapted to acidic conditions.  相似文献   

14.
Mechanisms influencing species richness are many. Recent theoretical research revealed additional mechanisms that involved neutral and lumpy coexistence and alternating assemblage states. These mechanisms can lead to conditions where the number of coexisting species is greater than the number of limiting resources, that is, species supersaturation. Our research focused on the role of disturbances (migration and pulsed through-flows) in supersaturated plankton systems. Our simulations employed 30 different supersaturated assemblages generated by using various ecological principals. Our findings indicated that immigration rates as low as 0.1% of total biomass per day generally led to regional homogenization of species and dramatic extinction events, with assemblages characteristic of lumpy coexistence being more resilient than those characteristic of neutral coexistence or alternating states. Generally, pulsed through-flows tended to offset, to some extent, the negative effects of migration. The precipitous loss of species with the onset of migration is observed in other systems as well, for example, cichlid fish communities of East Africa rift lakes and songbird assemblages from Indian Ocean islands. While many explanations have been offered to explain postimmigration extinctions in species-rich systems, another explanation might be that the assemblages in these systems are in a fragile state of supersaturated coexistence.  相似文献   

15.
Question: Are competitive hierarchies, which are typically based on the results of pair‐wise competition experiments, sensitive to the level of species interaction in the underlying competition experiments? Location: Controlled greenhouse study using vegetation typical of old‐fields in East Tennessee, USA. Methods: We extend traditional competitive effect/response methods to incorporate data from competition experiments featuring any level of species interaction (i. e., 2, 3, …, n species interacting simultaneously) and develop an ordinal technique that makes hierarchies more robust to variation in the numerical values of relative yield. We apply these methodological techniques to empirical data from a greenhouse experiment wherein four old‐field plant species were grown in pair‐wise and tri‐wise combination. We also demonstrate how resampling can be used to determine the variability of data and its consequences for development of competitive hierarchies. Results: Different hierarchies were produced when we used different evaluation methods, different levels of species interaction, and different levels of replication. More acute resampling distributions and wider ranges of target/neighbor scores revealed that higher levels of species interaction lead to more distinct hierarchies. Conclusions: Hierarchies developed from interactions among subsets of species may inadequately characterize relationships among the full community because of indirect or higher‐order interactions within multi‐species assemblages. Different evaluation methods can yield different hierarchies, and resampling is an effective tool to determine the sensitivity of resultant hierarchies to the level of replication. In sum, our new methodology can be used to control uncertainty in poorly‐replicated experiments.  相似文献   

16.
He HB  Wang HB  Fang CX  Lin ZH  Yu ZM  Lin WX 《PloS one》2012,7(5):e37201
Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Separating allelopathy from resource competition is almost impossible in natural systems but it is important to evaluate the relative contribution of each of the two mechanisms on plant interference. Research on allelopathy in natural and cultivated plant communities has been hindered in the absence of a reliable method that can separate allelopathic effect from resource competition. In this paper, the interactions between allelopathic rice accession PI312777, non-allelopathic rice accession Lemont and barnyardgrass were explored respectively by using a target (rice)-neighbor (barnyardgrass) mixed-culture in hydroponic system. The relative competitive intensity (RCI), the relative neighbor effect (RNE) and the competitive ratio (CR) were used to quantify the intensity of competition between each of the two different potentially allelopathic rice accessions and barnyardgrass. Use of hydroponic culture system enabled us to exclude any uncontrolled factors that might operate in the soil and we were able to separate allelopathy from resource competition between each rice accession and barnyardgrass. The RCI and RNE values showed that the plant-plant interaction was positive (facilitation) for PI312777 but that was negative (competition) for Lemont and barnyardgrass in rice/barnyardgrass mixed-cultures. The CR values showed that one PI312777 plant was more competitive than 2 barnyardgrass plants. The allelopathic effects of PI312777 were much more intense than the resource competition in rice/barnyardgrass mixed cultures. The reverse was true for Lemont. These results demonstrate that the allelopathic effect of PI312777 was predominant in rice/barnyardgrass mixed-cultures. The most significant result of our study is the discovery of an experimental design, target-neighbor mixed-culture in combination with competition indices, can successfully separate allelopathic effects from competition.  相似文献   

17.
Much research on rice allelopathy has been directed toward the selection of allelopathic rice strains and the identification of allelochemicals in rice. This paper briefly summarizes recent progress in the rice allelopathy and focuses on rediscovery of momilactone B as an allelochemical. A large number of rice varieties were found to inhibit the growth of several plant species when grown together under field and/or laboratory conditions. These findings suggest that rice probably produces and releases allelochemical(s) into the environment. The putative compound causing the inhibitory effect of rice was recently isolated from rice root exudates, and the chemical structure of the inhibitor was determined by spectral data as momilactone B. In addition, it has been found that momilactone B is released from rice roots into the neighboring environment, and the release level of momilactone B from rice may be sufficient to cause growth inhibition of neighboring plants. These findings suggest that momilactone B may play an important role in rice allelopathy.  相似文献   

18.
Invasive plants can affect native plants through competition or allelopathy, and researchers often use pot experiments as a tool to measure the strength of these interactions. Recently, such pot experiments provided inconsistent estimates of the impact and allelopathic potential of invasive knotweed, one of the world’s most successful plant invaders. We suspected that the inconsistencies may be explained by the use of different substrates in different experiments. To test this, we conducted an experiment in which knotweed competed pairwise with five common native European species in several different substrates: two compost-based potting substrates and two natural soils, with or without extra fertilizer added. To test for allelopathy, we added activated carbon to half of the pots. We found that knotweed was generally much more successful, and there was much more evidence for its allelopathy, when tested in artificial potting substrates than in natural soils. Furthermore, addition of extra fertilizer decreased the dominance of knotweed and changed patterns of allelopathy. The physicochemical properties of potting soil, such as lower bulk density, higher pore space, permeability and nitrogen content may better allow rhizomes to penetrate and/or allelochemicals to be produced and diffused. If artificial substrates generally exaggerate dominance and allelopathy also in other invasive plants, then many previous studies may have overestimated the potential impact of invaders, and the results of these experiments should be interpreted with caution. To avoid misleading results, experiments that test the competitive or allelopathic impact of invasive plants should be done with natural soils, preferably from the targeted habitats.  相似文献   

19.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   

20.
1. We studied the effects of fish water and temperature on mechanisms of competitive exclusion among two Daphnia species in flow‐through microcosms. The large‐bodied D. pulicaria outcompeted the medium sized D. galeata × hyalina in fish water, but not in the control treatment. Daphnia galeata × hyalina was competitively displaced 36 days earlier at 18 °C than at 12 °C. 2. It is likely that the high phosphorus content of fish water increased the nutritional value of detrital seston particles by stimulating bacterial growth. Daphnia pulicaria was presumably better able to use these as food and hence showed a more rapid somatic growth than its competitor. This led to very high density of D. pulicaria in fish water, but not in the controls. The elevated D. pulicaria density coincided with high mortality and reduced fecundity in D. galeata × hyalina, resulting in competitive displacement of the hybrid. 3. It is clear that the daphnids competed for a limiting resource, as grazing caused a strong decrease in their seston food concentration. However, interference may also have played a role, as earlier studies have shown larger Daphnia species to be dominant in this respect. The high density of large‐bodied D. pulicaria in fish water may have had an allelopathic effect on the hybrid. Our data are inconclusive with respect to whether the reached seston concentration was below the threshold resource level (R*) of the hybrid, where population growth rate and mortality exactly balance, as it would be set in the absence of interference, or whether interference actually raised the hybrid's R* to a value above this equilibrium particle concentration. 4. Our results do clearly show that fish‐released compounds mediated competitive exclusion among zooplankton species and that such displacement occurred at a greatly enhanced rate at an elevated temperature. Fish may thus not only structure zooplankton communities directly through size‐selective predation, but also indirectly through the compounds they release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号