首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present the setup of a flow injection analysis system designed for on-line monitoring of glutamate and glutamine. These amino acids represent a major energy source in mammalian cell culture. A cycling assay consisting of glutamate dehydrogenase and aspartate aminotransferase produces NADH proportional to the glutamate concentration in the sample. NADH is then measured spectrophotometrically. Glutamine is determined by conversion to glutamate which is fed into the cycling assay. The conversion of glutamine to glutamate is catalyzed by asparaginase. Asparaginase was used in place of glutaminase due to its relatively high reactivity with glutamine and a pH optimum similar to that of glutamate dehydrogenase. The enzymes were immobilized covalently to activated controlled pore glass beads and integrated into the flow injection analysis system. The application of the immobilized enzymes and the technical setup are presented in this paper.  相似文献   

2.
3.
Abstract Estuarine microcosms were used to follow conjugal transfer of a broad host range IncP1 plasmid from a Pseudomonas putida donor to indigenous bacteria. Donor cells were added at a concentration similar to the natural abundance of bacteria in the water column (106 cells ml−1). Transfer was not detected in any of the test microcosms (calculated limit of detection of 10−7 and 10−4 transconjugants donor−1 in water column and sediment, respectively), with the exception of transfer to an isogenic recipient (added at 105 cells ml−1) in sediments of controls that had been inoculated with both donors and recipients. The same plasmid was transferred with high efficiencies (10−1 to 10−3) to a variety of recipients in filter and broth matings. These results suggest that if conjugal gene transfer occurred, it was at efficiencies that were not detectable in estuarine microcosms simulating natural population densities.  相似文献   

4.
As a result of high production costs, commercial products from microalgae must command high prices. Astaxanthin produced by Haematococcus is a product that has become a commercial reality through novel and advanced technology. Cultivation methods have been developed to produce Haematococcus containing 1.5-3.0% astaxanthin by dry weight, with potential applications as a pigment source in aquaculture, poultry feeds and in the worldwide nutraceutical market.  相似文献   

5.
Abstract: The production of the fusion protein staphylococcal protein A/E. coli β-galactosidase in Escherichia coli was studied in batch and fed batch cultivations. Batch cultivation of a recombinant E. coli strain yielded a final cell dry weight of 16.4 g 1-1 with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the cell dry weight. Fed batch cultivation made it possible to increase the final cell dry weight to 77.0 g 1-1. The intracellular product concentration (25%) was lower as compared to batch cultivation resulting in a total concentration of recombinant protein of 19.2 g 1-1.  相似文献   

6.
The case-control design is frequently used to study the discriminatory accuracy of a screening or diagnostic biomarker. Yet, the appropriate ratio in which to sample cases and controls has never been determined. It is common for researchers to sample equal numbers of cases and controls, a strategy that can be optimal for studies of association. However, considerations are quite different when the biomarker is to be used for classification. In this paper, we provide an expression for the optimal case-control ratio, when the accuracy of the biomarker is quantified by the receiver operating characteristic (ROC) curve. We show how it can be integrated with choosing the overall sample size to yield an efficient study design with specified power and type-I error. We also derive the optimal case-control ratios for estimating the area under the ROC curve and the area under part of the ROC curve. Our methods are applied to a study of a new marker for adenocarcinoma in patients with Barrett's esophagus.  相似文献   

7.
8.
Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.  相似文献   

9.
Per cell protein expression in virally-infected insect cells declines significantly at high cell density resulting in a decrease in volumetric productivity. Specific protein expression levels in Spodoptera frugiperda (Sf-21) cells could be increased at high cell densities by increasing the oxygen supply and by supplementing the medium with glutamine post-infection. beta-Galactosidase yield was increased from 411 to 855 IU/ml by increasing the glutamine concentration in the medium by 46% and increasing the gas phase oxygen concentration from 21 to 80%. Similarly, the yield of a secreted alkaline phosphatase was increased from 14.2 to 26.2 IU/mL using the same conditions. Part of the increase in production with Sf-21 culture was due to increased release to the extra-cellular compartment at the higher oxygen concentrations. Increasing the gas phase oxygen concentration to 95% in conjunction with a 100% increase in glutamine and glucose concentrations did not improve the yield any further. Peak production under elevated oxygen and nutrient conditions occurred at 72 h about 24-48 h earlier than under normal conditions. In a Trichoplusia ni cell line (BTI-TN-5B1-4), the maximum secreted alkaline phosphatase activity was increased from 10 to 27.2 IU/mL by similarly manipulating the oxygen supply. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 142-152, 1997.  相似文献   

10.
11.
[14C]Glutamine uptake in a crude synaptosomal (P2) fraction, (representing the sum of [14C]glutamine accumulated and [14C]glutamate formed by hydrolysis), is distinct from glutamate uptake. Glutamine uptake is Na+-independent and unaffected by the Na+–K+-ATPase inhibitor ouabain, whereas glutamate uptake is Na+-dependent and inhibited by ouabain. The uptake of both glutamine and glutamate is unaffected by the gamma-glutamyltransferase inhibitor, Acivicin. This indicates that glutamine uptake is not mediated by a carrier, as distinct from that of glutamate, and also not linked to gamma-glutamyl-transferase. Na+ affects the distribution of glutamine-derived glutamate by increasing the synaptosomal content and reducing that of the medium. When glutamate release from synaptosomes preloaded with [14C]glutamate is measured by superfusion technique in order to prevent reuptake, Na+ has been found to inhibit release in a non-depolarizing medium (Ringer buffer with no Ca2+) of the [14C]glutamate as well as of endogenous glutamate. The specific activity of the [14C]glutamine-derived glutamate in the incubation medium is much higher than that in the synaptosomes, indicating that there exists a readily releasable pool of newly formed glutamate in addition to another pool. The latter glutamate pool is partially reduced by Na+.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

12.
BackgroundMetabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms.Scope of reviewWe review here some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers.Major conclusionsThis review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states.General significanceThis review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers.  相似文献   

13.
14.
Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: D. Söll  相似文献   

15.
16.
17.
18.
19.
Pathways of glutamine metabolism in resting and proliferating rat thymocytes were evaluated by in vitro incubations of freshly prepared or 60-h cultured cells for 1-2 h with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76 and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for 25 and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in both cells is transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37 and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.  相似文献   

20.
Summary We have examined the potential of fluorescent latex microparticles for use as a short term cell lineage marker in the mouse preimplantation embryo. Isolated blastomeres and intact embryos rapidly adsorb and subsequently endocytose the particles (0.2 m diameter) from a monodisperse suspension in normal medium, so that cytoplasmic endocytic organelles, but not the cytosol itself, becomes labelled. Latex fluorescence, either within intact embryos, disaggregated cells or thick resin sections, is stable during UV irradiation. The development of labelled embryos, both in terms of sequential morphological changes and their time of expression, was comparable to controls and resulted in blastocysts with normal cell numbers and capacity for tissue differentiation. Latex fluorescence is preserved within all the progeny of labelled blastomeres over several cell cycles (e.g. from 8-cell stage to 64-cell stage) and is not transmitted to unlabelled cells either by exocytosis or via midbodies. The particles are particularly suitable for labelling exclusively the entire population of outside cells in the intact embryo from the 16-cell stage onwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号