首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Body temperatures and kinematics are measured for male Centris pallida bees engaged in a variety of flight behaviours (hovering, patrolling, pursuit) at a nest aggregation site in the Sonoran Desert. The aim of the study is to test for evidence of thermoregulatory variation in convective heat loss and metabolic heat production and to assess the mechanisms of acceleration and forward flight in field conditions. Patrolling males have slightly (1–3 °C) cooler body temperatures than hoverers, despite similar wingbeat frequencies and larger body masses, suggesting that convective heat loss is likely to be greater during patrolling flight than during hovering. Comparisons of thorax and head temperature as a function of air temperature (Ta) indicate that C. pallida males are thermoregulating the head by increasing heat transfer from the thorax to the head at cool Ta. During patrolling flight and hovering, wingbeat frequency significantly decreases as Ta increases, indicating that variation in metabolic heat production contributes to thermal stability during these behaviours, as has been previously demonstrated for this species during flight in a metabolic chamber. However, wingbeat frequency during brief (1–2 s) pursuits is significantly higher than during other flight behaviours and independent of Ta. Unlike most other hovering insects, C. pallida males hover with extremely inclined stroke plane angles and nearly horizontal body angles, suggesting that its ability to vary flight speed depends on changes in wingbeat frequency and other kinematic mechanisms that are not yet described.  相似文献   

2.
Leaf temperatures (T1) of the parasitic plant Striga hermonthicaare substantially below those of the air (Ta), [TaT1]reaching 7 ?C at Ta = 40 ?C. This results from high rates oftranspiration and the consequent evaporative cooling of theleaf. Application of an antitranspirant, which mechanicallyimpedes foliar loss of water vapour, reduced transpiration andstomatal conductance by 40% and 57%, respectively, and reduced[TaT1] to 2 ?C at Ta = 40 ?C. The temperature sensitivityof photosynthesis in the host-parasite association differed,the optima (Topt) being 37.2 and 40.1 ?C for S. hermonthicaand sorghum, respectively. Once Topt had been exceeded in S.hermonthica net photosynthesis declined rapidly, reaching thelethal limit (Tmax) at 42.6 ?C. S. hermonthica is particularlysensitive to high temperatures and antitranspirant-induced overheatingleads to blackening and shrivelling of the leaf after as littleas 4 h at Ta = 40 ?C. Application of an antitranspirant underfield conditions in the Sudan at Ta = 40 ?C resulted in 28%and 67% reductions in transpiration and stomatal conductance,together with a 5 ?C increase in T1, and subsequent leaf death.In addition to these short-term physiological responses, antitranspirantspraying of the arasite increased the grain and straw yieldof the crop by factors of 3.4 and 2.6, respectively. Antitranspirantsmay have potential use as a method of controlling Striga inthe field. Key words: Striga hermonthica, sorghum, photosynthesis, transpiration, high temperature stress, anti-transpirant  相似文献   

3.
A method is described for the accurate measurement of the apparentresistance to water loss from the mesophyll cell walls of plantleaves (rw), and for studying the mechanism underlying thisresistance. The method for distinguishing possible mechanismsinvolves a comparison of the calculated values of rw at differentrates of evaporation. The value of rw remained below 50 s m–1at relative water contents greater than 11 ± 3% and 7± 2% for Pelargonium hortorum Bailey and Vicia faba L.respectively. Therefore rw is relatively insignificant at normalphysiological water contents in these species. When rw did increaseit was not sensitive to evaporation rate, suggesting that alowering of the vapour pressure at the evaporating sites wasnot involved. This contrasted with the results for cellulosefilter paper, where rw was more sensitive to evaporative flux.  相似文献   

4.
Honeybees, Apis mellifera, who show temporal polyethism, begin their adult life performing tasks inside the hive (hive bees) and then switch to foraging when they are about 2–3 weeks old (foragers). Usually hive tasks require little or no flying, whereas foraging involves flying for several hours a day and carrying heavy loads of nectar and pollen. Flight muscles are particularly plastic organs that can respond to use and disuse, and accordingly it would be expected that adjustments in flight muscle metabolism occur throughout a bee’s life. We thus investigated changes in lifetime flight metabolic rate and flight muscle biochemistry of differently aged hive bees and of foragers with varying foraging experience. Rapid increases in flight metabolic rates early in life coincided with a switch in troponin T isoforms and increases in flight muscle maximal activities (V max) of the enzymes citrate synthase, cytochrome c oxidase, hexokinase, phosphofructokinase, and pyruvate kinase. However, further increases in flight metabolic rate in experienced foragers occurred without additional changes in the in vitro V max of these flight muscle metabolic enzymes. Estimates of in vivo flux (v) compared to maximum flux of each enzyme in vitro (fractional velocity, v/V max) suggest that most enzymes operate at a higher fraction of V max in mature foragers compared to young hive bees. Our results indicate that honeybees develop most of their flight muscle metabolic machinery early in life. Any further increases in flight metabolism with age or foraging experience are most likely achieved by operating metabolic enzymes closer to their maximal flux capacity.  相似文献   

5.
The relationship between high temperature stress injury andtemperature dependence of the transverse relaxation time (T2)of leaf water was examined using NMR in four cultivars of wheatdiffering in their sensitivity to high temperature stress. TheT2declined with increasing temperature between 25 and 35 °C.A comparison of relative injury based on electrolyte leakageand T2, between 40 and 50 °C, indicated that while membranepermeability increased with increasing temperature there wasan increase in T2until 44 and 48 °C in susceptible and tolerantcultivars respectively, followed by a sharp decline. This patternof change in T2with increasing temperature was consistent whetherthe same or different samples were used for each treatment temperature.Loss of temperature dependence of T2after heat killing indicatedirreversible changes in T2, probably due to the loss of membraneintegrity. Heat tolerant varieties, which suffered less membraneinjury, had a higher T2compared to susceptible varieties. Tolerantvarieties also maintained the T2of leaf water protons to highertemperatures than did sensitive varieties. This NMR-based, non-invasive,rapid technique could be used to efficiently detect heat injuryin leaf tissues. Copyright 1999 Annals of Botany Company Membrane integrity, transverse relaxation time, high temperature stress, Triticum aestivum L.  相似文献   

6.
Guerrero et al (1994) promote Tauti's equation, rate = a exp(b temp), as simple to fit by log conversion (which may be formallyinappropriate), empirically adequate, and having ‘appropriatebiological characteristics’. No function is justifiablefrom reductionist theories, but Belehrádek's, rate =a (temp – T0)b, with b fixed for the taxon of interest,fits equally well, and singularly distinguishes differencesattributable to temperature adaptation (T0, often misunderstoodas ‘biological zero’), and to size or other species-dependentproperties (a).  相似文献   

7.
8.
Flowering weeds, though often deemed undesirable in turfgrass lawns, provide food resources for declining pollinator populations in urbanized landscapes. We sampled bees and other pollinators directly from flowering common dandelion (Taraxacum officinale) and white clover (Trifolium repens) in lawns of similar character in central Kentucky USA to identify species likely to be exposed if such weeds are inadvertently oversprayed during application of lawn insecticides. We also tested the hypothesis that pollinator assemblages visiting spring-blooming white clover in urban and suburban lawns are as species-rich and diverse as in more rural lawn settings. We collected about 50 different species of insect pollinators, including 37 species of bees, from the aforementioned lawn weeds. Two of the six species of bumble bees (Bombus spp.) collected are considered uncommon and possibly in decline. Hover flies (Syrphidae), honey bees (Apis mellifera), and non-Apid wild bees predominated on dandelions whereas proportionately fewer hover flies and more A. mellifera and Bombus spp. visited white clover, especially in summer. Species richness of bees visiting white clover was similar in urban, suburban or periurban-rural lawns, although A. mellifera were proportionately more abundant, and Bombus spp. were less abundant, with increasing percentage of hardscape in surrounding areas. Fostering public awareness of the diversity of bees and other pollinators that visit flowering lawn weeds might help nurture a sociocultural shift toward more pollinator-friendly lawn care practices.  相似文献   

9.
The effect of ultraviolet A (UVA) on growth and photosyntheticrate was studied in diatoms (Melosira spp.) of the phytoplanktonof a eutrophic lake and a cultured green alga Chloretla ellipsoidea.The cells were incubated under photosynthetically active radiation(PAR) (–UVA) or PAR + UVA conditions (+UVA). Growth ofC.ellipsoidea was retarded under +UVA, as shown by an increasein the lag period, but the rate of exponential growth was almostthe same in + and –UVA conditions. The photosyntheticrate was depressed markedly by UVA in Chlorella cells grownunder –UVA. In contrast, cells grown in +UVA showed onlyslight inhibition by UVA and after exposure to UVA for 6 daysthere was no inhibition. During the growth experiment, the cellularchlorophyll a content was higher in +UVA than +UVA grown cells.A similar effect was observed in diatoms from the eutrophicLake Suwa. In vivo fluorescence with (Fa) and without 3-(3,4-dichloropheny)-l,l-dimethylurea (DCMU) (Fb) and the photosynthetic rate were measured forC.ellipsoidea and the diatoms for 5 h under + and –UVAconditions. Soon after C.ellipsoidea had been subjected to +UVA,Fb and Fa / Fb decreased quickly and reached minima after 40min and 1 h, respectively. The suppressed in vivo fluorescenceresumed and full recovery was achieved after 4 h. This suggeststhat reactivation of the photosystem is acquired under prolongedexposure to UVA. A similar shift of Fa + Fb, but no change inFb, was found in diatoms by exposure to UVA. Changes in photosyntheticoxygen evolution by C.ellipsoidea under +UVA were similar tochanges in Fa + Fb. Degradation of chlorophyll a extracted inmethanol was enhanced by UVA. The rate of degradation by UVAwas independent of temperature from 15 to 34°C, suggestinga photochemical reaction. The results indicate that C.ellipsoideaand Melosira spp. acclimatize to prolonged UVA exposure by reactivationof the photosystem and enhanced cellular chlorophyll a synthesis.The ecological importance of these results to phytoplanktonproductivity in natural aquatic environments is discussed.  相似文献   

10.
For a single seed population of each of four species of grainlegume positive linear relationships were shown between temperatureand rate of germination for different fractions (G) of eachpopulation, from a base temperature, Tb(G), at which germinationrate is zero, to an optimum temperature, To(G) at which germinationrate is maximal. At constant temperatures warmer than To(G)there were negative relations (probably linear) between temperatureand rate of germination to the maximum temperature for germination,Tm(G), Within each population Tb(G) did not differ, but it didvary between species, viz.0.0?C, 0.25?C, 4.and 8.5?C for chickpea(Cicer arietinum L.), lentil (Lens culinaris Medic.), soyabean(Glycine max [ Merr.) and cowpea (Vigna unguiculata [L.] Walp.),respectively. In contrast, To(G) varied both within each populationand also between the four species: 80% of seeds in each populationhad To(G) values within the range 31.8?C to 33.8 ?C, 24.0?Cto 24.4?C, 34.0?C to 34.5?C and 33.2?C to >40?C, respectively.Values of Tm(G) were much more vanable: the 80% population rangewas 48 .0?C to 60.8?C for chickpea, 31.8?C to 34.4?C for lentiland 46.8?C to 55.2?C for soyabean; reliable estimates couldnot be made for cowpea, but the results suggest higher and morevariable values of Tm(G) than in the other three species. Atsub-optimal temperatures the distribution of thermal time forthe different fractions of each population was normal, exceptfor lentil where it was log-normal. A single equation is proposedto describe the influence of sub-optimal temperatures on ratesof germination for whole seed populations. At supra-optimaltemperatures, variation in thermal time for the different fractionsof each population was only slight. The implications of thesefindings for the adaptation of grain legume crops to differentenvironments, and for the screening of germplasm, are discussed. Key words: Seed germination rate, temperature, grain legumes  相似文献   

11.
Flight is energetically very costly. For birds the mechanicalpower in relation to airspeed is characterized by a U-shapedfunction. From this function we can derive optimal flight speedsassociated with minimum power (Vmp), minimum cost of transport(Vmr) and minimum overall time of migration (Vmt). Since flightis energetically so costly, aerial displays and song flightcan potentially serve as signals reliably indicating the individualquality or resource potential of the signaler. In order to maximizethe amount of song flight produced, we expect Vmp during songflight, while during migration we rather expect Vmr or Vmv Wecompared flight speeds of skylarks (Alauda arvensis) duringsong flight and migration flight, respectively. In this speciespredicted Vmp = 5.5 m/s, Vmr = 10.5 m/s, and Vmt = 12.1 m/s.The preferred airspeed during song flight did not differ significantlyfrom the predicted Vmp, while airspeed during migration wassignificantly higher than Vmr and Vmp indicating that flightspeed is a flexible trait that birds adjust to different situations.Why the skylarks speed up so much on migration is still unclear,but it may be that due to the shape of the predicted power curve,variation in cost of transport at high speeds is relativelysmall.  相似文献   

12.
Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (Ta) and solar radiation they are likely to be exposed in their natural environment in Middle Europe.The mean thorax temperature (Tth) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of Ta (3-30 °C). At warmer conditions (Ta = 30-39 °C) Tth increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of Tbody − Ta of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a Ta of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase Tth by about 1-3 °C to improve force production of flight muscles. At higher Ta they exhibited cooling efforts to get rid of excess heat. A high Tth also allowed regulation of the head temperature high enough to guarantee proper function of the bees’ suction pump even at low Ta. This shortened the foraging stays and this way reduced energetic costs. With decreasing Ta bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance.  相似文献   

13.
In terrestrial endotherms, evaporation is a significant mechanism of water loss in hot environments. Although water is passively lost by evaporation, individuals can regulate it at different levels. Inhabiting a relatively stable environment characterized by mild ambient temperature (Ta) and high humidity can ensure a balanced water budget. Many fossorial rodents are well adapted to live in such conditions. In this study, evaporative water loss (EWL) of fossorial rodent species with different degree of adaptations to underground life (from strictly subterranean to those with regular surface activity) was evaluated. By measuring EWL, the specific contribution of either evaporative or non-evaporative components of heat loss can be determined. With the exception of the silvery mole-rat (Heliophobius argenteocinereus), in all tested rodents EWL is relatively stable below and within the thermoneutral zone (TNZ). As Tas increase above TNZ, EWL increases as does total thermal conductance, but conductance increases several times more than EWL. In addition, non-evaporative routes seem to be more important than evaporative heat loss in the analyzed species. No clear pattern of EWL in relation to a species degree of fossoriality or sociality was detected. In this context, atmosphere of burrows could affect EWL, since the high humidity found inside tunnels can establish limits on evaporation to favor water rather than thermal balance.  相似文献   

14.
Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to pollinate plant species in these areas, which are potentially poor in pollinators.  相似文献   

15.
Responses of the leaves of five species of azalea to environmentalstresses, such as freezing, dehydration, high temperature andsalt spray, were measured in terms of water proton NMR relaxationtimes (T1), supercooling ability, and water content. Three subtropicalspecies (R. scabrum cv. Shounoshin, R. eriocarpum and R. tashiroivar. lasiophyllum) and two northern species (R. indicum cv.Kumano-satsuki and R. yedoense f. poukhanense), which originatedin different ecological habitats, showed characteristic behaviorsin terms of T1 relaxation times. In general, a species witha large change in T1 is more stress-sensitive than a speciesshowing the opposite tendency. The relative sensitivity to variousstresses of each species appears to be related to the severityof conditions in its natural habitat. It seems possible thatthose species of azalea with higher sensitivity to a particularsingle stress may also exhibit higher sensitivity to severalor even most stresses, and vice versa. (Received August 27, 1992; Accepted February 26, 1993)  相似文献   

16.
Rattlesnakes, copperheads, and other pit vipers have highly sensitive heat detectors known as pit organs, which are used to sense and strike at prey. However, it is not currently known how temperature change triggers cellular and molecular events that activate neurons supplying the pit organ. We dissociated and cultured neurons from the trigeminal ganglia (TG) innervating the pit organs of the Western Diamondback rattlesnake (Crotalus atrox) and the copperhead (Agkistrodon contortix) to investigate electrophysiological responses to thermal stimuli. Whole cell voltage-clamp recordings indicated that 75% of the TG neurons from C. atrox and 74% of the TG neurons from A. contortix showed a unique temperature-activated inward current (IT). We also found an IT-like current in 15% of TG neurons from the common garter snake, a species that does not have a specialized heat-sensing organ. A steep rise in the current-temperature relationship of IT started just below 18°C, and cooling temperature-responsive TG neurons from 20°C resulted in an outward current, suggesting that IT is on at relatively low temperatures. Ion substitution and Ca2+ imaging experiments indicated that IT is primarily a monovalent cation current. IT was not sensitive to capsaicin or amiloride, suggesting that the current did not show similar pharmacology to other mammalian heat-sensitive membrane proteins. Our findings indicate that a novel temperature-sensitive conductance with unique ion permeability and low-temperature threshold is expressed in TG neurons and may be involved in highly sensitive heat detection in snakes. snake; thermosensory; trigeminal; ion conductance  相似文献   

17.
When grown in pots and well-watered, the relative growth ratesof the above ground parts of two species of Moricandia (M. arvensis,an intermediate C3–C4 species, and M. moricandioides,a C3 species) were inferior to those of two cultivated Brassicaspecies (B. campestris and B. napus). The Moricandia specieshad thicker leaves (greater d.wt per unit leaf area) with morechlorophyll than the Brassica species and had slightly greaterrates of photosynthesis per unit leaf area at an irradiance(400–700 nm) of 2000 µmol quanta m–2 s –1.Leaves of M. arvensis, known to have a CO2 compensation pointbetween that of C3 and C4 species, had a lower ratio of theintercellular to atmospheric partial pressure of CO2 (C1/Ca)and a greater instantaneous water use efficiency (WUE) thanthose of M. moricandioides and the Brassica species. Carbon isotope discrimination (  相似文献   

18.
四种天敌对麦双尾蚜的功能反应   总被引:1,自引:0,他引:1  
一种蚜小蜂 Aphelinus sp. 对麦双尾蚜Diuraphis noxia (Mordvilko) 的功能反应为Holling I型,直线方程为Na=0.6060N-3.4700。七星瓢虫 Coccinella septempunctata L. 成虫对麦双尾蚜功能反应也为I型,直线方程为Na=0.6020N+5.9000;多异瓢虫 Hippodamia variegata Goeze成虫和斑腹蝇 Leucopis annulipes Zett. 3龄幼虫对麦双尾蚜的功能反应均为II型,关系式分别为1/Na=1.2550/N+0.0046和1/Na=1.3280/N+0.0071。  相似文献   

19.
In the dry tropics, foraging bees face significant thermal constraints as a result of high ambient temperatures and direct insolation. In order to determine the potential importance of body size and body coloration in heat gain and heat loss, passive warm-up and cooling rates were measured for freshly killed workers of 24 stingless bee species. Results accorded with biophysical principles. Small bees reached lower temperature excesses (Texc) and warmed up and lost heat much more rapidly than larger bees. In addition to body size, body coloration had a clear effect on thermal parameters. Light-coloured bees warmed up less rapidly and had lower Texc than dark bees. An intraspecific comparison of Melipona costaricensis and Cephalotrigona capitata colour morphs confirmed that body coloration influences thermal characteristics. This study is the first to indicate that abdominal coloration in stingless bees might be involved in the regulation of body temperature in extreme thermal conditions. However, body temperatures of foraging bees of colour morphs were not very different. This is probably due to behavioural adaptations (e.g. foraging strategies) or differences in convective and evaporative heat loss or the production of metabolic heat during flight, that all mask the effect of body colour. Notwithstanding such effects and potential thermoregulatory capabilities, stingless bees show niche differentiation and biogeographic distributions that correlate with body coloration and body size. This also suggests that, in general, light bees have an advantage over black bees in hot open lowland habitats, whereas black bees might have an advantage in wet habitats and mountains. The origin, occurrence and function of flavinism (yellow integument colouring) are discussed.  相似文献   

20.
There are conflicting reports with regard to difference in effectsof day temperature (TD) and night temperatures (TN) on plantdevelopment. The objective of this study is to determine whetherthere are different effects ofTDandTNon development from sowingto flowering in rice (Oryza sativaL.). Plants of 24 rice cultivars were grown in naturally-lightedgrowth chambers at five diurnally constant (22, 24, 26, 28 and32 °C) and four diurnally fluctuating temperatures (26 /22,30 /22, 22 /26 and 22 /30 °C forTD/TNwith 12hd-1each) witha constant photoperiod of 12hd-1. The treatments were selectedto enable the separation of effects ofTDandTNon developmentrate (DR). The response of DR to constant temperatures was typically nonlinear.This nonlinearity could not explain the difference in floweringdates between fluctuating temperatures with the same mean dailyvalue but oppositeTD/TNdifferences. Differential effects ofTDandTNonDR to flowering were detected in all but one cultivar. In mostcases,TDexerted a greater influence thanTN, in contrast withmany previous reports based on the assumption of a linearitybetween DR and temperature. The data were further analysed bya nonlinear model which separated effects ofTDandTN. The estimatedvalue for the optimumTNwas generally 25 –29 °C, about2 –4 °C lower than the estimated optimumTDin mostcultivars. The effects ofTDandTNon DR were found to be interactivein some cultivars. These results form a new basis for modellingflowering dates in rice. Oryza sativa; rice; flowering; development; day and night temperature; thermoperiodicity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号