首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

2.
A human immunodeficiency virus type 1 (HIV-1) mutant lacking the V1 and V2 variable loops in the gp120 exterior envelope glycoprotein replicated in Jurkat lymphocytes with only modest delays compared with the wild-type virus. Revertants that replicated with wild-type efficiency rapidly emerged and contained only a few amino acid changes in the envelope glycoproteins compared with the parent virus. Both the parent and revertant viruses exhibited increased sensitivity to neutralization by antibodies directed against the V3 loop or a CD4-induced epitope on gp120 but not by soluble CD4 or an antibody against the CD4 binding site. This result demonstrates the role of the gp120 V1 and V2 loops in protecting HIV-1 from some subsets of neutralizing antibodies.  相似文献   

3.
Using recombinant and mutant viruses generated between two human immunodeficiency virus type 1 isolates that display differences in cell tropism and sensitivity to soluble CD4 neutralization, we show that these two properties of the virus are regulated by different mechanisms. Whereas there is an association between V3 loop conformation and a particular cellular tropism, soluble CD4 neutralization sensitivity appears to be determined by amino acid differences in the C2 domain of the envelope gp120 that modulate the stability of gp120-gp41 association. Our findings further illustrate the importance of functional interactions among different regions of the envelope gp120 in regulating the biological phenotypes of human immunodeficiency virus and suggest that additional probing of the V3 loop with monoclonal antibodies may identify specific structural features of this loop that determine cell tropism.  相似文献   

4.
E A Berger  J R Sisler    P L Earl 《Journal of virology》1992,66(10):6208-6212
The ability of soluble forms of CD4 to induce gp120 release from the human immunodeficiency virus type 1 envelope glycoprotein complex may reflect molecular events associated with membrane fusion. The third hypervariable (V3) region of gp120 appears to play a role in fusion independent of CD4 binding. We demonstrate herein that envelope glycoprotein molecules rendered fusion defective by mutations in conserved residues within the V3 region nevertheless undergo efficient soluble CD4-induced gp120 release.  相似文献   

5.
The domains of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein that are required for envelope function have been partially characterized. Little is known, however, about the nature of the interactions between these domains. To identify regions of the HIV-1 envelope glycoprotein that are involved in interactions necessary for proper envelope function, we constructed a series of 14 envelope recombinants between the env genes of two HIV-1 isolates. The envelope chimeras were examined for their ability to induce syncytia, to be proteolytically processed, and to function during a spreading viral infection. Our results demonstrate that the exchange between the two isolates of the first and second hypervariable regions (V1/V2) of gp120 results in defects in envelope glycoprotein processing, syncytium formation, and infectivity. Long-term passage of cultures infected with virus bearing a V1/V2 chimeric envelope glycoprotein leads to the emergence of a revertant virus with replication characteristics comparable to those of the wild type. Analysis of the revertant indicated that an Ile-->Met change in the C4 region of gp120 (between hypervariable regions V4 and V5) is responsible for the revertant phenotype. This single amino acid change restores infectivity without significantly affecting gp160 processing, CD4 binding, or the levels of virion-associated gp120. While the Ile-->Met change in C4 greatly enhances the fusogenic potential of the V1/V2 chimeric envelope glycoprotein, it has a detrimental effect on syncytium formation when analyzed in the context of the wild-type envelope. These results suggest that an interaction required for proper envelope glycoprotein function occurs between the V1/V2 and C4 regions of gp120.  相似文献   

6.
Mutant gp120 glycoproteins exhibiting a range of affinities for CD4 were tested for ability to form syncytia and to complement an env-defective provirus for replication. Surprisingly, gp120 mutants that efficiently induced syncytia and/or complemented virus replication were identified that exhibited marked (up to 50-fold) reductions in CD4-binding ability. Temperature-dependent changes in gp120, which result in a seven- to ninefold increase in affinity for CD4, were shown not to be necessary for subsequent membrane fusion or virus entry events. Mutant glycoproteins demonstrating even relatively small decreases in CD4-binding ability exhibited reduced sensitivity to soluble CD4. The considerable range of CD4-binding affinities tolerated by replication-competent HIV-1 variants has important implications for antiviral strategies directed at the gp120-CD4 interaction.  相似文献   

7.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

8.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) infects human CD4+ cells by a high-affinity interaction between its envelope glycoprotein gp120 and the CD4 molecule on the cell surface. Subsequent virus entry into the cells involves other steps, one of which could be cleavage of the gp120 followed by virus-cell fusion. The envelope gp120 is highly variable among different HIV-1 isolates, but conserved amino acid sequence motifs that contain potential proteolytic cleavage sites can be found. Following incubation with a soluble form of CD4, we demonstrate that gp120 of highly purified HIV-1 preparations is, without addition of exogenous proteinase, cleaved most likely in the V3 loop, yielding two proteins of 50 and 70 kDa. The extent of gp120 proteolysis is HIV-1 strain dependent and correlates with the recombinant soluble CD4 sensitivity to neutralization of the particular strain. The origin of the proteolytic activity in the virus preparations remains unclear. The results support the hypothesis that cleavage of gp120 is required for HIV infection of cells.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) variants passaged in T-cell lines, often called laboratory isolates, are potently neutralized by soluble CD4 (sCD4), whereas primary HIV-1 variants are highly resistant to sCD4 neutralization. Previously, it was demonstrated that the domain from V1 to V3 of the HIV-1 gp120 molecule contains one of the major determinants of sCD4 neutralization sensitivity, and the same region has also been implicated as influencing syncytium-inducing (SI) capacity and T-cell-line tropism. To determine possible differences in sCD4 neutralization sensitivity between phenotypically distinct primary HIV-1 variants, a panel of non-syncytium-inducing (NSI) and SI HIV-1 variants was studied. Primary NSI and SI HIV-1 variants appeared to be equally resistant to sCD4 neutralization. Consistent with this observation, sCD4 did not induce gp120 shedding from either primary NSI or SI HIV-1 variants at 37 degrees C. Thus, it is not the potential of certain primary HIV-1 variants to infect T-cell lines but rather their adaptation to T-cell lines that is reflected in specific properties of the viral envelope which influence sCD4 neutralization sensitivity.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

12.
A number of monoclonal antibodies (MAbs) with various levels of neutralizing activity that recognize epitopes in the V1/V2 domain of LAI-related gp120s have been described. These include rodent antibodies directed against linear and conformational epitopes and a chimpanzee MAb, C108G, with extremely potent neutralizing activity directed against a glycan-dependent epitope. A fusion glycoprotein expression system that expressed the isolated V1/V2 domain of gp120 in native form was used to analyze the structural characteristics of these epitopes. A number of MAbs (C108G, G3-4, 684-238, SC258, 11/68b, 38/66a, 38/66c, 38/62c, and CRA3) that did not bind with high affinity to peptides immunoprecipitated a fusion glycoprotein expressing the V1/V2 domain of HXB2 gp120 in the absence of other human immunodeficiency virus sequences, establishing that their epitopes were fully specified within this region. Biochemical analyses indicated that in the majority of V1/V2 fusion molecules only five of the six glycosylation signals in the V1/V2 domain were utilized, and the glycoforms were found to be differentially recognized by particular MAbs. Both C108G and MAbs directed against conformational epitopes reacted with large fractions of the fully glycosylated molecules but with only small fractions of the incompletely glycosylated molecules. Mutational analysis of the V1 and V2 glycosylation signals indicated that in most cases the unutilized site was located either at position 156 or at position 160, suggesting the occurrence of competition for glycan addition at these neighboring positions. Mutation of glycosylation site 160 destroyed the C108G epitope but increased the fraction of the molecules that presented the conformational epitopes, while mutation of the highly conserved glycosylation site at position 156 greatly diminished the expression of the conformational epitopes and increased expression of the C108G epitope. Similar heterogeneity in glycosylation was also observed when the HXB2 V1/V2 fusion glycoprotein was expressed without most of the gp70 carrier protein, and thus, this appeared to be an intrinsic property of the V1/V2 domain. Heterogeneity in expression of conformational and glycan-dependent epitopes was also observed for the natural viral env precursor, gPr160, but not for gp120. These results suggested that the closely spaced glycosylation sites 156 and 160 are often alternatively utilized and that the pattern of glycosylation at these positions affects the formation of the conformational structures needed for both expression of native epitopes in this region and processing of gPr160 to mature env products.  相似文献   

13.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

14.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

15.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

16.
The primary event in the infection of cells by HIV is the interaction between the viral envelope glycoprotein, gp120, and its cellular receptor, CD4. A recombinant form of gp120 was found to bind to a recombinant CD4 antigen with high affinity. Two gp120-specific murine monoclonal antibodies were able to block the interaction between gp120 and CD4. The gp120 epitope of one of these antibodies was isolated by immunoaffinity chromatography of acid-cleaved gp120 and shown to be contained within amino acids 397-439. Using in vitro mutagenesis, we have found that deletion of 12 amino acids from this region of gp120 leads to a complete loss of binding. In addition, a single amino acid substitution in this region results in significantly decreased binding, suggesting that sequences within this region are directly involved in the binding of gp120 to the CD4 receptor.  相似文献   

17.
Insertion of four amino acids into various locations within the amino-terminal halves of the human immunodeficiency virus type 1 gp120 or gp41 envelope glycoprotein disrupts the noncovalent association of these two envelope subunits (M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. A. Haseltine, and J. Sodroski, Science 237:1351-1355, 1987). To localize the determinants on the gp120 envelope glycoprotein important for subunit association, amino acids conserved among primate immunodeficiency viruses were changed. Substitution mutations affecting either of two highly conserved regions located at the amino (residues 36 to 45) and carboxyl (residues 491 to 501) ends of the mature gp120 molecule resulted in nearly complete dissociation of the envelope glycoprotein subunits. Partial dissociation phenotypes were observed for some changes affecting residues in the third and fourth conserved gp120 regions. These results suggest that hydrophobic regions at both ends of the gp120 glycoprotein contribute to noncovalent association with the gp41 transmembrane glycoprotein.  相似文献   

18.
Several parameters which may affect the infectivity of human immunodeficiency virus type 1 in tissue culture were analyzed. In particular, we used gel exclusion chromatography to investigate how the loss of the surface glycoprotein gp120 from virions of the HTLV-IIIB (IIIB), HTLV-IIIRF (RF), and SF-2 isolates modulates infectivity. In IIIB and RF cultures, a high proportion of the total gp120 was virion bound initially but was gradually lost from the virions over time. In contrast, most of the gp120 (and p24) in SF-2-infected cultures was soluble and the few particles present had a fivefold-lower level of virus-bound gp120. However, this reduced level of virion-bound gp120 was more resistant to shedding. Loss of a major proportion of gp120 from IIIB and RF virions resulted in reduced infectivities, and in addition, the resulting accumulation of soluble gp120 in the cultures could competitively inhibit viral infection, especially with SF-2. Increased shedding of virion gp120 also affected the neutralization of IIIB and RF particles. However, the high sensitivity to human serum neutralization characteristic of SF-2 was unaffected by soluble gp120 in cultures, suggesting that the epitopes responsible are not present on soluble gp120.  相似文献   

19.
Primary isolates of human immunodeficiency virus type 1 (HIV-1) are much less sensitive to neutralization by soluble CD4 (sCD4) and sCD4-immunoglobulin (Ig) chimeras (CD4-IgG) than are HIV-1 strains adapted to growth in cell culture. We demonstrated that there are significant reductions (10- to 30-fold) in the binding of sCD4 and CD4-IgG to intact virions of five primary isolates compared with sCD4-sensitive, cell culture-adapted isolates RF and IIIB. However, soluble envelope glycoproteins (gp120) derived from the primary isolate virions, directly by detergent solubilization or indirectly by recombinant DNA technology, differed in affinity from RF and IIIB gp120 by only one- to threefold. The reduced binding of sCD4 to these primary isolate virions must therefore be a consequence of the tertiary or quaternary structure of the envelope glycoproteins in their native, oligomeric form on the viral surface. In addition, the rate and extent of sCD4-induced gp120 shedding from these primary isolates was lower than that from RF. We suggest that reduced sCD4 binding and increased gp120 retention together account for the relative resistance of these primary isolates to neutralization by sCD4 and CD4-IgG and that virions of different HIV-1 isolates vary both in the mechanism of sCD4 binding and in subsequent conformational changes in their envelope glycoproteins.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号