首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to test the hypothesis that bulls have significant intra-individual differences in the hydraulic conductivity (L(p)) and permeability coefficient for glycerol (P(s)) of the sperm cell membrane. The permeability parameters were determined at 22, 10, and 0 degrees C of sperm from 7 Holstein Frisian artificial insemination (AI) bulls, using four ejaculates per bull. A stopped-flow approach was applied to provide temporal resolution sufficient to measure rapid cell volume changes under anisosmotic conditions in the absence or presence of glycerol. This technique utilizes a concentration-dependent self-quenching entrapped fluorophore. The resulting cell volume changes were used in three-parameter fitting calculations to compute L(p) in the absence glycerol, and L(p) in the presence of glycerol (L(p)(gly)) and P(s). Averaged over all bulls, L(p) in the absence of glycerol was 0.28+/-0.01, 0.15+/-0.01 and 0.10+/-0.01 microm min(-1)atm(-1) (mean+/-SD) at 22, 10 and 0 degrees C, respectively, yielding an Arrhenius activation energy (E(a)) of 7.39 kcal/mol. The average L(p)(gly) value at 22 degrees C, was 3.8 times lower than L(p) in the absence of glycerol (P<0.05). L(p)(gly), P(s), and the reflection coefficient (sigma) at 22 degrees C were 0.073+/-0.015 microm min(-1)atm(-1), 0.80+/-0.33 x 10(-3)cm min(-1), and 0.92+/-0.10 (mean+/-SD), respectively. Subsequent experiments were performed at 10 and 0 degrees C. Activation energies for L(p)(gly) and P(s) were 10.08 and 8.77 kcal/mol, respectively. The significant differences between individual bulls in L(p) and P(s) indicate that individual males may require individual adjustments of the cooling protocol. Application of these data in a theoretical model to simulate the osmotic events during freezing resulted in predicted optimal cooling rates in the range of published empirical values.  相似文献   

2.
Ethylene glycol (EG) is the emerging cryoprotectant of choice for preservation of mammalian embryos but has not been widely used for oocyte preservation. Techniques for oocyte cryopreservation need to be improved before they can be incorporated into routine clinical practice. Hence the permeability characteristics of oocytes in the presence of EG have been determined in order to facilitate the design of cryopreservation protocols using this cryoprotectant. Individual mouse oocytes were held using negative pressure applied to the zona pellucida by means of a micropipet. Each oocyte was perfused with 1 ml 1.5 mol L(-1) EG at 30, 19, or 10 degrees C, a total of 10 oocytes being perfused at each temperature. The osmotic response of each oocyte before, during and after perfusion was recorded on videotape. Measurements of mean cell diameter across three axes were used to calculate oocyte volume, assuming them to be spherical, and, using mathematical modeling, values for hydraulic conductivity (L(p)) were found to be 0.91 +/- 0.05, 0.51 +/- 0.02, and 0.18 +/- 0.01 microm min(-1) atm(-1); cryoprotectant permeability (P(EG)) was 0.24 +/- 0.01, 0.09 +/- 0.005, and 0.03 +/- 0.004 microm s(-1); and reflection coefficient (sigma) was 0.98 +/- 0.005, 0.96 +/- 0.01, and 0.97 +/- 0.01 at 30, 19, and 10 degrees C, respectively. The activation energy (E(a)) of L(p) was 14. 0 kCal mol(-1) and of P(EG) was 16.4 kCal mol(-1).  相似文献   

3.
Transport of water and glycerol in aquaporin 3 is gated by H(+).   总被引:15,自引:0,他引:15  
Aquaporins (AQPs) were expressed in Xenopus laevis oocytes in order to study the effects of external pH and solute structure on permeabilities. For AQP3 the osmotic water permeability, L(p), was abolished at acid pH values with a pK of 6.4 and a Hill coefficient of 3. The L(p) values of AQP0, AQP1, AQP2, AQP4, and AQP5 were independent of pH. For AQP3 the glycerol permeability P(Gl), obtained from [(14)C]glycerol uptake, was abolished at acid pH values with a pK of 6.1 and a Hill coefficient of 6. Consequently, AQP3 acts as a glycerol and water channel at physiological pH, but predominantly as a glycerol channel at pH values around 6.1. The pH effects were reversible. The interactions between fluxes of water and straight chain polyols were inferred from reflection coefficients (sigma). For AQP3, water and glycerol interacted by competing for titratable site(s): sigma(Gl) was 0.15 at neutral pH but doubled at pH 6.4. The sigma values were smaller for polyols in which the -OH groups were free to form hydrogen bonds. The activation energy for the transport processes was around 5 kcal mol(-1). We suggest that water and polyols permeate AQP3 by forming successive hydrogen bonds with titratable sites.  相似文献   

4.
The permeability of human platelets to glycerol was determined at 37 degrees C, 25 degrees C, and 0 degrees C from the rate of change of cell volume after abrupt addition of 0.5 mol/liter glycerol in phosphate-buffered saline. Intracellular water volume was measured employing both tritiated water and a photometric method. Intracellular glycerol was measured employing tritiated glycerol. The glycerol permeability coefficient derived from the tracer cell volume data was 4.0 +/- 0.7 X 10(-7) cm/s at 37 degrees C, and 1.1 +/- 0.4 X 10(-7) cm/s at 25 degrees C, and the photometric data gave a permeability coefficient of 5.4 +/- 0.4 X 10(-7) cm/s at 37 degrees C. The activation energy between 23 degrees C and 37 degrees C for glycerol permeation was 19.8 kcal/mol. The cells were virtually impermeable to glycerol at 0 degrees C. The minimum intracellular water volume attained after the addition of 0.5 mol/liter glycerol at 37 degrees C determined by the photometric method was 47.8% of normal water volume, whereas the minimum water volume calculated assuming that glycerol exerted its full osmotic effect (i.e., sigma = 1) was 45.6%. The reflexion coefficient was therefore assumed to be unity. Neither method of cell volume determination could be used with 1 or 2 mol/liter glycerol: adequate separation of the cells from the labeled medium could not be achieved in the tracer method; in the photometric method, it was apparent that transmittance (660 nm) was influenced by one or more variables in addition to cell volume.  相似文献   

5.
A sudden increase in the transmural pressure gradient across endothelial monolayers reduces hydraulic conductivity (L(p)), a phenomenon known as the sealing effect. To further characterize this endothelial adaptive response, we measured bovine aortic endothelial cell (BAEC) permeability to albumin and 70-kDa dextran, L(p), and the solvent-drag reflection coefficients (sigma) during the sealing process. The diffusional permeability coefficients for albumin (1.33 +/- 0.18 x 10(-6) cm/s) and dextran (0.60 +/- 0.16 x 10(-6) cm/s) were measured before pressure application. The effective permeabilities (measured when solvent drag contributes to solute transport) of albumin and dextran (P(ealb) and P(edex)) were measured after the application of a 10 cmH(2)O pressure gradient; during the first 2 h of pressure application, P(ealb), P(edex), and L(p) were significantly reduced by 2.0 +/- 0.3-, 2.1 +/- 0.3-, and 3.7 +/- 0.3-fold, respectively. Immunostaining of the tight junction (TJ) protein zonula occludens-1 (ZO-1) was significantly increased at cell-cell contacts after the application of transmural pressure. Cytochalasin D treatment significantly elevated transport but did not inhibit the adaptive response, whereas colchicine treatment had no effect on diffusive permeability but inhibited the adaptive response. Neither cytoskeletal inhibitor altered sigma despite significantly elevating both L(p) and effective permeability. Our data suggest that BAECs actively adapt to elevated transmural pressure by mobilizing ZO-1 to intercellular junctions via microtubules. A mechanical (passive) component of the sealing effect appears to reduce the size of a small pore system that allows the transport of water but not dextran or albumin. Furthermore, the structures of the TJ determine transport rates but do not define the selectivity of the monolayer to solutes (sigma).  相似文献   

6.
Successful cryopreservation of oocytes of the rhesus monkey (Macaca mulatta) would facilitate the use of this valuable animal model in research on reproduction and development, while providing a stepping stone towards human oocyte cryopreservation and the conservation of endangered primate species. To enable rational design of cryopreservation techniques for rhesus monkey oocytes, we have determined their osmotic and permeability characteristics in the presence of dimethylsulfoxide (DMSO), ethylene glycol (EG), and propylene glycol (PROH), three widely used cryoprotectants. Using nonlinear regression to fit a membrane transport model to measurements of dynamic cell volume changes, we estimated the hydraulic conductivity (L(p)) and cryoprotectant permeability (P(s)) of mature and immature oocytes at 23.5 degrees C. Mature oocyte membranes were most permeable to PROH (P(s) = 0.56 +/- 0.05 microm/sec) and least permeable to DMSO (P(s) = 0.24 +/- 0.02 microm/sec); the permeability to EG was 0.34 +/- 0.07 microm/sec. In the absence of penetrating cryoprotectants, mature oocytes had L(p) = 0.55 +/- 0.05 microm/min/atm, whereas the hydraulic conductivity increased to 1.01 +/- 0.10, 0.61 +/- 0.07, or 0.86 +/- 0.06 microm/min/atm when mature oocytes were exposed to DMSO, EG, or PROH, respectively. The osmotically inactive volume (V(b)) in mature oocytes was 19.7 +/- 2.4% of the isotonic cell volume. The only statistically significant difference between mature and immature oocytes was a larger hydraulic conductivity in immature oocytes that were exposed to DMSO. The biophysical parameters measured in this study were used to demonstrate the design of cryoprotectant loading and dilution protocols by computer-aided optimization.  相似文献   

7.
Hematopoietic stem cells derived from fetal liver have promising therapeutic potential for allotransplantation but require a specific protocol to minimize the damage produced by cryopreservation procedures. In this study, a fundamental approach was applied for designing a cell preservation protocol. To this end, the biophysical characteristics that describe the osmotic reaction of CD34(+)CD38(-) human fetal liver stem cell candidates were studied using fluorescent microscopy. The osmotically inactive volume of the stem cell candidates was determined as 48% of the isotonic volume. The permeability coefficients for water and Me(2)SO were determined at T = +22 degree C: L(p) = 0.27 +/- 0.03 microm x min(-1)atm(-1), P(Me(2)SO)) = 2.09 +/- 0.85 x 10 (-4) cm x min(-1), sigma (Me(2)SO)) = 0.63 +/- 0.03 and at T = +12 degree C: L(p) = 0.15 +/-0.02 microm x min(-1)atm(-1), P(Me(2)SO)) = 6.44 +/-1.42 x 10 (-5) cm x min(-1), sigma (Me(2)SO)) = 0.46 +/- 0.05. The results obtained suggest that post-hypertonic and hypotonic stress are the possible reasons for damage to a CD34(+)CD38(-) cell during the cryopreservation procedure.  相似文献   

8.
Plasma membrane permeability coefficients and their activation energies (Ea) for water (Lp) and dimethyl sulfoxide (PMe2SO) as well as the reflection coefficient (sigma) were determined for germinal vesicle (GV) and metaphase II (MII) bovine oocytes. A micropipette perfusion technique was used with a temperature controlled circulation chamber, which was adapted to a micromanipulator. Experiments were performed at five different temperatures (30, 20, 10, 4 and -3 degrees C). The Kedem and Katchalsky model was assumed and L(p), P(Me2SO) and sigma were estimated. Estimated permeability values from the experimental temperatures were then applied to Arrhenius plots In(Lp) or In(PMe2SO) vs 1/Temperature (K) to estimate the activation energies (Ea) for L(p)Me2SO and P(Me2SO). The estimated E(a) for L(p)Me2SO for GV and MII oocytes were 23.84 Kcal/mol and 8.46 Kcal/mol, respectively. The E(a) for P(Me2SO) were 21.0 Kcal/mol and 23.20 Kcal/mol, respectively. The correlation (r2) for these linear regression plots for GV oocytes were 0.83 and 0.95 for L(p)Me2SO and P(Me2SO), respectively. For MII oocytes, r2 values were 0.95 and 0.99 for L(p)Me2SO and P(Me2SO), respectively. There was a possible discontinuity detected in the Arrhenius plot for L(p)Me2SO for GV oocytes. A significant decrease of the reflection coefficient was observed at 10 degrees C compared to other experimental temperatures. These data provide a fundamental basis that should be taken into account for low temperature preservation of bovine oocytes in the presence of Me2SO.  相似文献   

9.
Successful cryopreservation of mammalian cells requires rapid transport of water and cryoprotective solutes across the plasma membrane. Aquaporin-3 is known as a water/solute channel that can transport water and neutral solutes such as glycerol. In this study we examined whether artificial expression of aquaporin-3 in mouse oocytes can improve water and glycerol permeability and oocyte survival after cryopreservation. Immature mouse oocytes were injected with aquaporin-3 cRNA and were cultured for 12 h. Then the hydraulic conductivity (L(P)) and glycerol permeability (P(GLY)) of matured oocytes were determined from the relative volume changes in 10% glycerol in PB1 medium at 25 degrees C. Mean +/- SD values of L(P) and P(GLY) of cRNA-injected oocytes (3.09 +/- 1.22 micro m min(-1) atm(-1) and 3.69 +/- 1.47 x 10(-3) cm/min, respectively; numbers of oocytes = 25) were significantly higher than those of noninjected oocytes (0.83 +/- 0.02 micro m min(-1) atm(-1) and 0.07 +/- 0.02 x 10(-3) cm/min, respectively; n = 13) and water-injected oocytes (0.87 +/- 0.10 micro m min(-1) atm(-1) and 0.08 +/- 0.02 x 10(-3) cm/min, respectively; n = 20). After cryopreservation in a glycerol-based solution, 74% of cRNA-injected oocytes (n = 27) survived as assessed by their morphological appearance, whereas none of the water-injected oocytes survived (n = 10). When cRNA-injected oocytes that survived cryopreservation were inseminated in vitro, the penetration rate was 40% (n = 48) and the cleavage rate was 31% (n = 70), showing that oocytes retain their ability to be fertilized. This is the first report to show that artificial expression of a water/solute channel in a cell improves its survival after cryopreservation. This approach may enable cryopreservation of cells that have been difficult to cryopreserve.  相似文献   

10.
This study presents a generic numerical model to simulate the coupled solute and solvent transport in human ovarian tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA). The model accounts for the axial and radial diffusion of the solute (CPA) as well as axial convection of the CPA, and a variable vascular surface area (A) during the transport process. In addition, the model also accounts for the radial movement of the solvent (water) into and out of the vascular spaces. Osmotic responses of various cells within an human ovarian tissue section are predicted by the numerical model with three model parameters: permeability of the tissue cell membrane to water (L(p)), permeability of the tissue cell membrane to the solute or CPA (omega) and the diffusion coefficient of the solute or CPA in the vascular space (D). By fitting the model results with published experimental data on solute/water concentrations within an human ovarian tissue section, I was able to determine the permeability parameters of ovarian tissue cells in the presence of 1.5M solutions of each of the following: dimethyl sulphoxide (DMSO), propylene glycol (PROH), ethylene glycol (EG), and glycerol (GLY), at two temperatures (4 degrees C and 27 degrees C). Modeling Approach 1: Assuming a constant value of solute diffusivity (D = 1.0 x 10(-9) m(2)/sec), the best fit values of L(p) ranged from 0.35 x 10(-14) to 1.43 x 10(-14) m(3)/N-sec while omega ranged from 2.57 x 10(-14) to 70.5 x 10(-14) mol/N-sec. Based on these values of L(p) and omega, the solute reflection coefficient, sigma defined as sigma = 1-omega v(CPA)/L(P) ranged from 0.9961 to 0.9996. Modeling Approach 2: The relative values of omega and sigma from our initial modeling suggest that the embedded ovarian tissue cells are relatively impermeable to all the CPAs investigated (or omega approximately 0 and sigma approximately 1.0). Consequently the model was modified and used to predict the values of L(p) and D assuming omega = 0 and sigma = 1.0. The best fit values of L(p) ranged from 0.44 x 10(-14) to 1.2 x 10(-14) m(3)/N-sec while D ranged from 0.85 x 10(-9) to 2.08 x 10(-9) m(2)/sec. Modeling Approach 3: Finally, the best fit values of D from modeling approach 2 were incorporated into model 1 to re-predict the values of L(p) and omega. It is hoped that the ovarian tissue cell parameters reported here will help to optimize chemical loading and unloading procedures for whole ovarian tissue sections and consequently, tissue cryopreservation procedures.  相似文献   

11.
The NaCl reflection coefficient in proximal tubule has important implications for the mechanisms of near isosmotic volume reabsorption. A new fluorescence method was developed and applied to measure the transepithelial (sigma NaClTE) and basolateral membrane (sigma NaClcl) NaCl reflection coefficients in the isolated proximal straight tubule from rabbit kidney. For sigma NaClTE measurement, tubules were perfused with buffers containing 0 Cl, the Cl-sensitive fluorescent indicator 6-methoxy-N-[3-sulfopropyl] quinolinium and a Cl-insensitive indicator fluorescein sulfonate, and bathed in buffers of differing cryoscopic osmolalities containing NaCl. The transepithelial Cl gradient along the length of the tubule was measured in the steady state by a quantitative ratio imaging technique. A mathematical model based on the Kedem-Katchalsky equations was developed to calculate the axial profile of [Cl] from tubule geometry, lumen flow, water (Pf) and NaCl (PNaCl) permeabilities, and sigma NaClTE. A fit of experimental results to the model gave PNaCl = (2.25 +/- 0.2) x 10(-5) cm/s and sigma NaClTE = 0.98 +/- 0.03 at 23 degrees C. For measurement of sigma NaClbl, tubule cells were loaded with SPQ in the absence of Cl. NaCl solvent drag was measured from the time course of NaCl influx in response to rapid (less than 1 s) Cl addition to the bath solution. With bath-to-cell cryoscopic osmotic gradients of 0, -60, and +30 mosmol, initial Cl influx was 1.23, 1.10, and 1.25 mM/s; a fit to a mathematical model gave sigma NaClbl = 0.97 +/- 0.04. These results indicate absence of NaCl solvent drag in rabbit proximal tubule. The implications of these findings for water and NaCl movement in proximal tubule are evaluated.  相似文献   

12.
The cryosensitivity of mammalian embryos depends on the stage of development. Because permeability to water and cryoprotectants plays an important role in cryopreservation, it is plausible that the permeability is involved in the difference in the tolerance to cryopreservation among embryos at different developmental stages. In this study, we examined the permeability to water and glycerol of mouse oocytes and embryos, and tried to deduce the pathway for the movement of water and glycerol. The water permeability (L(P), microm min(-1) atm(-1)) of oocytes and four-cell embryos at 25 degrees C was low (0.63-0.70) and its Arrhenius activation energy (E(a), kcal/mol) was high (11.6-12.3), which implies that the water permeates through the plasma membrane by simple diffusion. On the other hand, the L(p) of morulae and blastocysts was quite high (3.6-4.5) and its E(a) was quite low (5.1-6.3), which implies that the water moves through water channels. Aquaporin inhibitors, phloretin and p-(chloromercuri) benzene-sulfonate, reduced the L(p) of morulae significantly but not that of oocytes. By immunocytochemical analysis, aquaporin 3, which transports not only water but also glycerol, was detected in the morulae but not in the oocytes. Accordingly, the glycerol permeability (P(GLY), x 10(-3) cm/min) of oocytes was also low (0.01) and its E(a) was remarkably high (41.6), whereas P(GLY) of morulae was quite high (4.63) and its E(a) was low (10.0). Aquaporin inhibitors reduced the P(GLY) of morulae significantly. In conclusion, water and glycerol appear to move across the plasma membrane mainly by simple diffusion in oocytes but by facilitated diffusion through water channel(s) including aquaporin 3 in morulae.  相似文献   

13.
14.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes and embryos. Several efforts have been made to facilitate the movement of water and cryoprotectants across the plasma membrane of fish oocytes/embryos because of their large size. Aquaporin-3 is a water/solute channel that can also transport various cryoprotectants. In this study, we tried to improve the permeability of immature medaka (Oryzias latipes) oocytes to water and cryoprotectants by artificially expressing aquaporin-3. The oocytes were injected with aquaporin-3 cRNA and cultured for 6-7 h. Then, hydraulic conductivity (L(P)) and cryoprotectant permeability (P(S)) were determined from volume changes in a hypertonic sucrose solution and various cryoprotectant solutions, respectively, at 25 degrees C. The L(P) value of the cRNA-injected oocytes was 0.22+/-0.04 microm/min/atm, nearly twice larger than that of intact or water-injected oocytes (0.14+/-0.02 and 0.14+/-0.03 microm/min/atm, respectively). P(S) values of intact oocytes for ethylene glycol, propylene glycol, and DMSO were 1.36+/-0.34, 1.97+/-0.20, and 1.17+/-0.52 x 10(-3) cm/min, respectively. The permeability to glycerol could not be calculated because oocytes remained shrunken in the glycerol solution. On the other hand, cRNA-injected oocytes had significantly higher P(S) values (glycerol, 2.20+/-1.29; ethylene glycol, 2.98+/-0.36; propylene glycol, 3.93+/-1.70; DMSO, 3.11+/-0.74 x 10(-3) cm/min) than intact oocytes. When cRNA-injected oocytes were cultured for 12-14 h, 51% matured to the metaphase II stage, and 43% of the matured oocytes were fertilized and hatched following in vitro fertilization and 14 days of culture. Thus, the permeability of medaka oocytes to water and cryoprotectants was improved by the artificial expression of aquaporin-3, and the oocytes retained the ability to develop to term.  相似文献   

15.
The existence and identity of protein water transporters in biological membranes has been uncertain. Osmotic water permeability (Pf) was measured in defolliculated Xenopus oocytes microinjected with water or mRNA from kidney cortex, kidney papilla, reticulocyte, brain, and muscle. Pf was measured by quantitative image analysis from the time course of oocyte swelling in response to an osmotic gradient. When assayed at 10 degrees C, Pf in water-injected oocytes increased from (3.6 +/- 0.9) x 10(-4) cm/s (S.D., n = 16) to 74 x 10(-4) cm/s with addition of amphotericin B, showing absence of unstirred layers. At 48-72 h after injection of 50 ng of unfractionated mRNA, Pf (in cm/s x 10(-4] was: 4.0 +/- 1.5 (rabbit brain, n = 15), 4.2 +/- 1.8 (rabbit muscle, n = 10), 18.4 +/- 6.3 (rabbit reticulocyte, n = 20), 16.1 +/- 5.6 (rat renal papilla, n = 24), 12.9 +/- 6.3 (rat renal cortex, n = 20), 14.4 +/- 6.1 (rabbit renal papilla, n = 15), and 11.8 +/- 3.4 (rabbit renal cortex, n = 8). In oocytes injected with mRNA from rat renal papilla, Pf was inhibited reversibly by 0.3 mM HgCl2 (4.1 +/- 1.6, n = 10); expressed water channels from kidney and red cell had activation energies of less than 4 kcal/mol. These results show functional oocyte expression of water channels from red cell, kidney proximal tubule (cortex), and the vasopressin-sensitive kidney collecting tubule (papilla), indicating that water channels are proteins, and providing an approach for the expression cloning of water channels.  相似文献   

16.
Membrane water permeability is habitually calculated from volume changes in Xenopus laevis oocytes during external osmotic challenges. Nevertheless, this approach is limited by the uncertainty on the oocyte internal composition. To circumvent this limitation a new experimental set up is introduced where the cell membrane of an emptied-out oocyte was mounted as a diaphragm between two chambers. In its final configuration the oocyte membrane was part of a closed compartment and net water movements induced swelling or shrinking of it. Volume changes were followed by video-microscopy and digitally recorded. In this manner, water movements could be continuously monitored while controlling chemical composition and hydrostatic pressure on both sides of the membrane. Using this novel experimental approach an increasing hydrostatic pressure gradient was applied to both mature (stage VI) and immature (stage IV) oocytes. The relative maximal volume change tolerated before disruption was similar in both cases (1.26+/-0.07 and 1.27+/-0.03 respectively) and similar to those previously reported under maximal osmotic stress. Nevertheless the osmotic permeability coefficient (P(OSM)) in mature oocytes ((1.72+/-0.58) x 10(-3) cm s(-1); n=6) was significantly lower than in immature oocytes ((5.18+/-0.59) x 10(-3) cm s(-1), n=5; p<0.005).  相似文献   

17.
The hydraulic conductivity in the presence of dimethyl sulfoxide Me(2)SO (L(p)(Me(2)SO)), Me(2)SO (P(Me(2)SO)) permeability and reflection coefficient (sigma) of immature (germinal vesicle; GV) and mature (metaphase II; MII) rat oocytes were determined at various temperatures. A temperature controlled micropipette perfusion technique was used to conduct experiments at five different temperatures (30, 20, 10, 4, and -3 degrees C). Kedem and Katchalsky membrane transport theory was used to describe the cell volume kinetics. The cell volumetric changes of oocytes were calculated from the measurement of two oocyte diameters, assuming a spherical shape. The activation energies (E(a)) of L(p)(Me(2)SO) and P(Me(2)SO) were calculated using the Arrhenius equation. Activation energies of L(p)(Me(2)SO) for GV and MII oocytes were 34.30 Kcal/mol and 16.29 Kcal/mol, respectively; while the corresponding E(a)s of P(Me(2)SO) were 19.87 Kcal/mol and 21.85 Kcal/mol, respectively. These permeability parameters were then used to calculate cell water loss in rat oocytes during cooling at subzero temperatures. Based on these values, the predicted optimal cooling rate required to maintain extra- and intracellular water in near equilibrium for rat GV stage oocytes was found to be between 0.05 degrees C/min and 0. 025; while for rat MII oocytes, the corresponding cooling rate was 1 degrees C/min. These data suggest that standard cooling rates used for mouse oocytes (e.g., 0.5-1 degrees C/min) can also be employed to cryopreserve rat MII oocytes. However, the corresponding cooling rate required to avoid damage must be significantly slower for the GV stage rat oocyte. J. Exp. Zool. 286:523-533, 2000.  相似文献   

18.
We previously reported that gentamicin binds to liposomes composed of anionic phospholipids and depresses glycerol permeability and raises the activation energy for glycerol permeation in these liposomes. We postulated that these changes in the glycerol permeability and in the activation energy (Ea) for glycerol permeation were due to hydrogen bonding between O-C = O groups in the hydrogen belt and one or more amino groups of gentamicin. To test this hypothesis, we examined the effects of gentamicin on the membrane surface potential, the glycerol permeability coefficient (p), the Ea for glycerol permeation, and the aggregation of liposomes composed of 1:1 phosphatidylcholine (PC) and phosphatidic acid with the acyl chains of phosphatidic acid in either an ester (PA) or an ether (PA*) linkage. Gentamicin depressed the membrane surface electrostatic potential, measured by the partitioning of methylene blue between the bulk solution and the liposomal membrane, to an equivalent degree in PC-PA and PC-PA* liposomes, which indicates that substitution of the ether for the ester linkage did not interfere with the electrostatic interaction between the cationic drug and the negatively charged phosphate head group. Gentamicin caused a temperature-dependent decrease of p and raised Ea for glycerol permeation from 17.7 +/- 0.3 to 21.6 +/- 0.4 kcal/mol in PC-PA liposomes but had little or no effect on these parameters in PC-PA* liposomes. In contrast, gentamicin induced a significantly greater degree of aggregation of PC-PA* liposomes compared to that of PC-PA liposomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

20.
The pressure response of (plant) cells to osmotic challenges depends on the reflection coefficient, sigma, of osmotically active solutes; it is less than predicted by the van't Hoff equation if sigma < 1. In Valonia utricularis, sigma is significantly reduced by internal (and, to a lesser extent, by external) unstirred layers, protecting the cytoplasm against vacuolar osmotic fluctuations. As shown by scanning and transmission electron microscopy, diffusion-restricted spaces are formed by innumerable small vacuoles that are interconnected with each other and with the central vacuole. They are embedded in networks of cytoplasmic strands connecting and encircling the organelles. Unstirred layers are also created in the central vacuole by an extensive network of acid mucopolysaccharide filaments (visualized by alcian blue staining). Mucopolysaccharides apparently also affect steady-state turgor by reducing the water activity. When the effective vacuolar osmotic pressure was adjusted to that of the bath by perfusion with an artificial vacuolar sap (AVS), an "offset turgor pressure" of 17 +/- 5 kPa was recorded. Consistent with the ultrastructural data, sigma values less than unity were calculated from the pressure response upon vacuolar addition of KCl or sucrose by perfusion (sigma(iKCl) = 0.63 +/- 0.13; sigma(isuc) = 0.58 +/- 0.17). Dilution of AVS yielded slightly higher sigma(iKCl) values (0.73 +/- 0.35). External addition to the artificial sea water (ASW) indicated that sigma(e) > sigma(i) for these osmotica. However, even in this case, sigma(esuc) (0.86 +/- 0.09) and sigma(ePEG) (0.58 +/- 0.08) were significantly less than sigma(eNaCl) (0.94 +/- 0.05) and sigma(eKCl) (0.91 +/- 0.13), presumably due to unstirred layers within the 4 micro m thick cell wall. Consistent with the low sigma values, a partial replacement of NaCl by osmotically equivalent amounts of sucrose (ASW(suc)), PEG and dextran, respectively, as well as replacement of Cl(-) by the large anion MES(-) induced an 'anomalous' hyposmotic turgor pressure response followed by the usual backregulation of pressure. After a 2-day preincubation in ASW(suc), significantly lower sigma(e) values were obtained both hyperosmotically (sigma(eNaCl) = 0.78 +/- 0.14; sigma(esuc) = 0.72 +/- 0.15) and hyposmotically (sigma(eNaCl) = 0.70 +/- 0.17; sigma(esuc) = 0.63 +/- 0.09), probably due to long-term effects on membrane structure to be elucidated yet. The freshwater alga Chara corallina lacked these apparently closely related structural and biophysical features of Valonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号