首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1H NMR spectrum of the glycopeptide antineoplastic antibiotic bleomycin has been examined in D2O solution (Fourier transform nuclear magnetic resonance, 270 MHZ) and in H2O solution (correlation nuclear magnetic resonance, 250 MHZ). Resonances have been assigned to specific hydrogens of the two most abundant congeners, bleomycin-A2 (BLM-A2) and bleomycin-B2 (BLM-B2), on the basis of (1) homonuclear spin decoupling, (2) comparison of the spectra of BLM-A2, BLM-B2, fragments of these antibiotics, and the related antibiotic phleomycin, and (3) the pH dependence of chemical shifts. Resonance assignments are presented for all the CH protons of BLM-A2 and BLM-B2 except for the saccharide groups, for which only the anomeric proton assignments are given. All of the NH protons have been identified with specific resonances except for the two primary amide groups, which yield four well-resolved peaks, whose specific assignment was not attempted. This study serves as a basis for future investigations of the conformation of bleomycin and its interaction with metals and nucleic acids.  相似文献   

2.
The NH exchange rates in aqueous media of oxytocin and 8-lysine vasopressin (LVP) have been measured by using transfer of solvent saturation method. The data are consistent with a "highly motile" dynamic equilibrium between folded and highly solvated conformations. The highly-motility limit applies to the exchange of NH hydrogens of oxytocin and LVP. Folded structures are more prevalent in oxytocin than in LVP. Partial shielding is indicated for peptide hydrogens of Asn5 and perhaps also Cys6 of oxytocin and for Cys6 of LVP. It is tentatively proposed that the folded conformation of oxytocin in aqueous media may contain a parallel beta-structure in the tocinamide ring consisting of two hydrogen bonds: one between the Tyr2 C = O and Asn5 peptide NH as originally proposed for the preferred conformation of oxytocin in dimethyl sulfoxide (D. W. Urry and R. Walter), and the second between he Cys1 C = O and the Cys6 NH. In LVP the hydrogen bond between the Tyr2 C = O and Asn5 peptide NH appears to be absent. The acylic tripeptide sequences (-Pro-X-Gly-NH2) of both hormones appear to be predominantly solvated. The second-order rate constants for acid catalyzed exchange of the primary amide hydrogens of Gln4, Asn5, and Gly9 of oxytocin are consistently greater for the trans NH than for the corresponding cis NH. This observation can be rationalized in terms of mechanisms involving protonation of either the amide oxygen, or the amide nitrogen, but with limited rotation about the C - N bond.  相似文献   

3.
I J Byeon  R F Kelley  M Llinás 《Biochemistry》1989,28(24):9350-9360
The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via 1H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli [Cleary et al. (1989) Biochemistry 28, 1884-1891]. The spectrum of t-PA kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identifies side-chain resonances from Leu46, which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Assignment of signals arising from the His13, His48a, and His64 side chains, which are unique to t-PA kringle 2, was assisted by the availability of a His64----Tyr mutant. Ligand-binding studies confirm that t-PA kringle 2 binds L-lysine with an association constant Ka approximately 11.9 mM-1. The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr36 and, within the kringle inner loop, Trp62, His64, Trp72, and Tyr74. Acid/base titration of aromatic singlets in the presence of L-lysine yields pKa* approximately 6.25 and approximately 4.41 for His13 and His64, respectively, and shows that the His48a imidazole group does not protonate down to pH* approximately 4.3. Thus, the His48a and His64 side chains are in solvent-shielded locations. As observed for the PGN kringles, the Trp62 indole group titrates with pKa* approximately 4.60, which indicates proximity of the side chain to a titratable carboxyl group, most likely that of Asp57 at the binding site. Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in 2H2O for full deuteration in the presence of L-lysine at 37 degrees C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in 1H2O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His48a imidazole NH3 proton and the three Trp indole NH1 protons. A strong dipolar interaction was observed among the Trp25 indole NH1, the Tyr50 amide NH, and the His48a imidazole CH2 protons, which affords evidence for an aromatic cluster in t-PA kringle 2 similar to that found at the hydrophobic kernel of PGN kringles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
H Arakawa  Y Muto  Y Arata  A Ikai 《Biochemistry》1986,25(22):6785-6789
A proton nuclear magnetic resonance (NMR) study is reported of human alpha-2-macroglobulin (alpha-2-M). It was observed that alpha-2-M, which consists of four identical subunits and has a molecular weight of 720,000, gives several sharp resonances. After cleavage of the "bait" region peptide with trypsin and subsequent removal of the peptide under a high salt condition, most of the sharp resonances disappeared, indicating that the sharp resonances observed in the native alpha-2-M originate from the amino acid residues in the bait region. Resonances due to the aromatic protons of the Tyr residue, which exists in the bait region, have been assigned on the basis of chemical shift. It was observed that the C3- and C5-H proton resonances for the Tyr residue are especially narrow, indicating that the side chain of the Tyr residue in the bait region is in a highly mobile state. Photochemically induced dynamic nuclear polarization experiments clearly show that the Tyr residue is actually exposed to the solvent. It was possible to identify resonances due to several His residues that are exposed to solvent. Other resonances, which probably originate from Arg residues in the bait region, were also observable in the conventional NMR spectra. On the basis of the present NMR data, we conclude that the bait region of the native alpha-2-M is highly flexible and exposed to solvent. On treatment of alpha-2-M with methylamine, no significant change has been detected in the NMR spectra observed in both the conventional and CIDNP mode.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The cyclododecapeptide, (Ala1-Pro2-Gly3-Val4-Gly5-Val6)2, was synthesized and its secondary structure was evaluated from extensive studies in dimethyl sulphoxide, trifluoroethanol and water using NMR methods. A selective decoupling technique in 13C-NMR has been utilized in order to assign the C=O carbon resonances. Temperature dependence of the peptide NH protons and the solvent perturbation of the peptide NH and C=O resonances show the occurrence in all solvents of a beta-turn (a 10-membered H-bond between the Val4 NH and Ala1 C=O) and a gamma-turn, an 11-membered H-bond between the Gly3 NH and the Gly5 C=O; and a possible 14-membered H-bond between the Ala1 NH and the Val4 C=O in dimethyl sulphoxide and trifluoroethanol. These secondary structural features are compared with the linear polyhexapeptide and found the the beta-turn and the gamma-turn are the common conformational features of these peptide systems.  相似文献   

6.
Solid-state proton nuclear magnetic resonance has been used to examine surface hydration in suspensions of monomethyldioleoylphosphatidylethanolamine (MeDOPE). The magic-angle spinning (MAS) 1H spectra for aqueous suspensions of MeDOPE in the L alpha phase exhibited two resonances of roughly equal intensity that could be ascribed to water protons, but both their spin-lattice relaxation times and chemical shifts converged upon conversion to the hexagonal phase. Only a single water peak was observed for analogous samples of dioleoylphosphatidylcholine (DOPC). MAS-assisted two-dimensional nuclear Overhauser effect spectroscopy (NOESY) was conducted for multibilayers of both MeDOPE and DOPC. Through-space interactions were identified between pairs of lipid protons, as expected from their chemical structure. For lamellar suspensions of MeDOPE, positive NOESY cross-peaks were observed between the downfield-shifted water resonance (only) and both CH2N and NH2CH3+ protons of the lipid headgroup. These cross-peaks were not observed in the NOESY spectra of MeDOPE in its hexagonal or cubic phases or for lamellar DOPC reference samples. Taken together, the observation of two water peaks, spin-lattice relaxation behavior, and NOESY connectivities in MeDOPE suspensions support the interpretation that the low-field water peak corresponds to hydrogen-bonded interlamellar water interacting strongly with the lipid. Such a population of water molecules exists in association with MeDOPE in the lamellar phase but not for its inverted phases or for lamellar dispersions of DOPC.  相似文献   

7.
The aqueous solution conformation of Tyr-Asn-Ile-Gln-Lys (UB5) corresponding to positions 59-63 of the polypeptide, ubiquitin, has been investigated by proton NMR. Like the parent protein, UB5 induces nonspecifically both T and B lymphocyte differentiation. The various NH and CH resonances of this pentapeptide have been assigned, and its solution conformation has been probed through a study of chemical shift variations with pH, temperature dependence of amide hydrogen chemical shifts, vicinal NH--C alpha H and C alpha H--C beta H2 coupling constant data, and amide hydrogen-exchange rates. The latter were measured in H2O by using a combination of transfer of solvent saturation and saturation recovery NMR experiments. The data are compatible with the assumption of a highly motile dynamic equilibrium among different conformations for this peptide. The various secondary amide hydrogens remain essentially exposed to the solvent. The temperature-dependence study of the amide hydrogen chemical shifts also did not reveal any strong internal hydrogen bonds. A rotamer population analysis of tyrosine and asparagine side chains suggests that two of the rotomers are predominantly populated for each of these residues. From these results, a picture emerges of the dynamic conformation of UB5 in aqueous solution.  相似文献   

8.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

9.
High-resolution 1H NMR spectroscopy at 300 MHz has been used to investigate the aromatic residues of a series of homologous polypeptides from sea anemones: anthopleurin-A from Anthopleura xanthogrammica and toxins I and II from Anemonia sulcata. Using two-dimensional NMR techniques, specific assignments to individual protons have been made for all aromatic resonances in the spectra of these molecules. In all three polypeptides the resonances from the two conserved Trp residues, 23 and 33, are shifted significantly from their random coil values, and the indole NH resonance of Trp-23 is not observed. These shift perturbations are due in part to a mutual interaction of the two indole rings, which is also indicated by the observation of nuclear Overhauser enhancements between protons of the two rings. Several other nonpolar side chains also interact with these two Trp residues, forming a hydrophobic region, the overall structure of which is conserved throughout the series. The other aromatic residues in these polypeptides appear not to participate in this structural region.  相似文献   

10.
1H NMR measurements have been conducted at 360 MHz on isolated pig platelet dense granules. Resonances of the H8, H2 protons of the adenine ring, H1' protons of the ribose moiety, and the aromatic hydrogens of 5-hydroxytryptamine (5HT) have been identified in spectra of intact dense granules. Like the 31P resonances of the nucleotides contained in the dense granules (U?urbil et al., 1984), the line widths and the intensities of these resonances were sensitive to sample temperature and osmolarity of the suspension medium. Their chemical shifts indicate that 5HT in the granule interior is predominantly bound to the nucleotides through ring-stacking interactions. Association of 5HT with the nucleotides was also confirmed by the presence of intermolecular nuclear Overhauser effect (NOE) between 5HT and nucleotide protons. Large and negative intermolecular NOE's observed among the nucleotide H8, H2 and H1' protons, together with upfield shifts undergone by these protons within the dense granules, demonstrate that the nucleotides form a complex where they are in close proximity of each other. The formation of this complex apparently does not require the presence of amines since removal of 5HT and histamine did not change the chemical shifts of the nucleotide protons. From T1 and T2 data, rotational correlation time of 4 ns was calculated for the nucleotides in the dense granule interior at 35 degrees C. A resonance tentatively identified as H2 of histamine was found to shift upon manipulation of the intragranular pH; it was used as an indicator of pH changes within the granule interior during 5HT uptake and showed that 5HT accumulation increases the intragranular pH. These results demonstrate that 5HT is first taken up in response to the inside acidic pH gradient across the granule membrane and is subsequently sequestered in a matrix formed by the divalent cations and the nucleotides.  相似文献   

11.
The conformational proclivity of leucine and methionine enkephalinamides in deuterated dimethyl sulphoxide has been investigated using proton magnetic resonance at 500 MHz. The resonances from the spin system of the various amino acid residues have been assigned from the 2-dimensional correlated spectroscopy spectra. The temperature variation of the amide proton shifts indicates that none of the amide proton is intramolecularly hydrogen-bonded or solvent-shielded. The analysis of vicinal coupling constants,3JHN.C 2H,along with temperature coefficients and the absence of characteristic nuclear Overhauser effect cross peaks between the NH protons reveal that there is no evidence of the chain folding in these molecules. However, the observation of nuclear Overhauser effect cross peaks between the NH and the CαH of the preceding residue indicates preference for extended backbone conformation with preferred side chain orientations particularly of Tyr and Phe in both [Leu5]- and [Met5]-enkephalinamides.  相似文献   

12.
Proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate the conformations of proximal histidyl residues of human normal adult hemoglobin, hemoglobin Kempsey [beta 99(G1) Asp leads to Asn], hemoglobin Osler [beta 145(HC2) Tyr leads to Asp], and hemoglobin McKees Rocks [beta 145(HC2) Tyr leads to Term] around neutral pH in H2O at 27 degrees C, all in the deoxy form. Two resonances that occur between 58 and 76 ppm downfield from the water proton signal have been assigned to the hyperfine shifted proximal histidyl NH-exchangeable protons of the alpha- and beta-chains of deoxyhemoglobin. These two resonances are sensitive to the quaternary state of hemoglobin, amino acid substitutions in the alpha 1 beta 2-subunit interface and in the carboxy-terminal region of the beta-chain, and the addition of organic phosphates. The experimental results show that there are differences in the heme pockets among these four hemoglobins studied. The structural and dynamic information derived from the hyperfine shifted proximal histidyl NH-exchangeable proton resonances complement that obtained from the ferrous hyperfine shifted and exchangeable proton resonances of deoxyhemoglobin over the spectral region from 5 to 20 ppm downfield from H2O. The relationship between these findings and Perutz's stereochemical mechanism for the cooperative oxygenation of hemoglobin is discussed.  相似文献   

13.
The aromatic H NMR spectrum of the kringle 1 domain from human plasminogen has been investigated by proton Overhauser experiments, acid-base titration, and two-dimensional chemical shift correlated spectroscopy. Spin-echo and pH response experiments lead to the identification of the N-terminal Tyr-3 phenol ring signals. The connectivities among the tryptophanyl aromatic protons have been established and sets of singlet-doublet-triplet resonances stemming from each of the two indole groups sorted according to their common side chain origin. Similarly, the four histidyl singlets have been identified and paired per imidazole group. From their pH responses, it is indicated that a histidyl (His31) and a tryptophanyl (Trp-II) residue are placed in the neighborhood of carboxyl groups. The high-field chemical shifts observed for proton resonances of the ligand epsilon-aminocaproic acid upon binding to kringle 1 indicate that the ligand-binding site is rich in aromatic components. Overhauser experiments reveal that Leu46 is surrounded by a cluster of interacting aromatic side chains, which includes Trp25, Phe36, His41, Trp62, and Tyr64, and define a hydrophobic region contiguous to the kringle lysine-binding site. Relative internuclear distances have been estimated for aromatic H-atoms in the vicinity of Leu46 by reference to one of the latter's CH3 sigma, sigma' groups. Some of the connectives have previously been found for Leu46 in kringle 4 which further supports the idea of a common structure for the homologous domains.  相似文献   

14.
Stereoselectively beta-deuterated species were synthesized of Ac-His-NHMe, Ac-His-OEt, Ac-His-OH and H-His-NHMe, which are useful as models of histidine residues in peptides. From the spectral comparison of 1H n.m.r., the beta-proton resonances of the normal species were unambiguously assigned. In (C2H3)2SO, C2(2)H5O2H, C2H3O2H, and C5(2)H5N solution and in aqueous solution, the lower-field and higher-field components of beta-proton resonances of the four histidine derivatives are assigned to the pro-R and pro-S protons, respectively. The alternative assignments apply for Ac-His-NHMe, Ac-His-OEt and Ac-His-OH in non-polar solvents such as C2HCl3. Vicinal coupling constants 3J alpha beta S and 3J alpha beta R were obtained for calculating the fractional populations of rotamers about the C alpha-C beta bond. The rotamer populations depend little on the ionization states of the alpha-amino and carboxyl groups or the imidazole ring. The rotamer populations depend significantly on the solvent polarity, similar to those of Phe, Tyr and Trp derivatives. For the two beta-proton resonances of His, Phe, Tyr, and Trp derivatives in a variety of solvents, linear relationships are found between the differences in chemical shifts and the differences in vicinal coupling constants.  相似文献   

15.
B J Lee  H Aiba  Y Kyogoku 《Biochemistry》1991,30(37):9047-9054
The identification and assignment of the proton magnetic resonances of some aliphatic and aromatic amino acid residues of cyclic AMP receptor protein (CRP) are reported. The signals of the leucine and valine residues at around 0 ppm were identified on the basis of intermolecular nuclear Overhauser effects, deuterium labeling, and partial proteolytic digestion. On the addition of cAMP, methyl proton signals due to Val-49 and three leucine residues were detected as upfield-shifted signals at around -0.2 ppm. These signals can be used as indicators of the proper binding of cAMP because they are not observed on the addition of cGMP or 2'-deoxy-cAMP. They are also not observed on cAMP binding to mutant CRP*5 (Ser-62-Phe), which can only be activated by a high concentration of cAMP, but they are observed on cAMP binding to other mutant CRP*s (four species), which can be activated by lower concentrations of cAMP. The resonance of some aromatic protons, i.e., C-2H of two tryptophans, C-2H and C-4H of six histidines, and C-2,6H and C-3,5H of six tyrosine residues in CRP, were assigned by means of deuterium labeling and NOE measurements. The 1H NMR spectrum of labeled CRP [Trp(ring-d5), Phe(ring-d5), and Tyr(3,5-d2)] showed good resolution in the aromatic region. The addition of cAMP to this CRP in D2O caused pronounced line broadening of resonances arising from the residues in the cAMP-binding domain, but the resonances of the DNA-binding domain were not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Two-dimensional (2D) proton magnetic resonance techniques used in conjunction with laser photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy have been applied to studying the kringle 4 domain from human plasminogen at 360 MHz. Out of 11 potential CIDNP-sensitive aromatic side chains, only 5 (His3, Tyr41, Tyr50, Trp72, and Tyr74) appear to be accessible to 3-(carboxymethyl)lumiflavin, the dye used to photogenerate spin polarization. Of these, Trp72 and Tyr74 are known to be at, or near, the lysine-binding site. The spin-spin scalar (J) and phase-sensitive dipolar (Overhauser) connectivities in the 2D experiments yield absolute assignments for the aromatic signals stemming from the exposed tyrosyl and tryptophanyl rings. Moreover, a number of side-chain H beta resonances can be identified and assigned to specific types of aromatic amino acid residues.  相似文献   

17.
A Motta  R A Laursen  M Llinás 《Biochemistry》1986,25(24):7924-7931
The low-field 1H NMR spectrum of the kringle 4 domain of human plasminogen has been investigated at 300 and 600 MHz for the protein dissolved in 1H2O. The spectrum exhibits six well-resolved resonances, spanning the 9.8 approximately less than delta approximately less than 13 ppm chemical shift range, which arise from exchange-labile H atoms. The acid-base response of the six resonances was monitored in order to characterize the signals in terms of their pH titration profiles. The sensitivity of the low-field resonances to kringle binding the antifibrinolytic ligands N alpha-acetyl-L-lysine and p-benzylaminesulfonic acid was also investigated. The lowest field resonance, at 12.6 ppm, is a doublet of J approximately 7.9 Hz, a splitting that is unprecedented for His or Trp ring NH signals. Selective Overhauser experiments centered on the exchangeable proton transitions identify four of the other resonances as stemming from the His31, His33, Trp I, and Trp II side-chain NH groups, where the latter two are, as yet, not definitely assigned to the specific residues, Trp25 and Trp62. The relative narrowness of the His imidazole NH signals indicates that the two rings are sterically shielded from direct water accessibility. In particular, the His33 NH site appears to be the most protected. The Overhauser evidence conclusively shows that the two identified exchangeable His ring proton signals arise from imidazole NH3 sites rather than from the NH1 tautomers. Similarly, these experiments lead to an unambigous characterization of the corresponding Trp aromatic CH spin systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cyclophilin (163 residues, Mr 17737), a peptidyl prolyl cis-trans isomerase, is a cytosolic protein that specifically binds the potent immunosuppressant cyclosporin A (CsA). The native form of the major bovine thymus isoform has been analyzed by 2D NMR methods, COSY, HOHAHA, and NOESY, in aqueous media. The 156 main-chain amides in CyP yield 126 observable NH/alpha CH couplings (81%, Gly pairs counted as 1). Following exhaustive D2O exchange, 44 amide resonances remain visible. Further analysis of the NH/NH, NH/alpha CH, and alpha CH/alpha CH regions of the COSY and NOESY data sets indicates that the residual amides in D2O form a coherent hydrophobic domain which yields 2D NMR features suggestive of a beta-sheet. Many (43/126) of the amide resonances have been classified according to amino acid type. In the aromatic region of the spectra, the assignment of the ring spin systems is nearly complete (12/15 Phe, 2/2 Tyr, 1/1 Trp, and 3/4 His). This has successfully lead to the complete assignment of all of their beta CH's, main-chain alpha CH resonances, and many of the backbone amide resonances (8/12 Phe, 2/2 Tyr, 1/1 Trp, and 2/3 His). In other regions of the spectrum, the side-chain and main-chain resonances for 10/23 Gly, 9/9 Ala, 5/11 Thr, 5/9 Val, and 1/6 Leu have been completely assigned. The drug-free cyclophilin and CsA-bound cyclophilin form two discrete protein structures that are in slow exchange on the NMR time scale. Comparison of the fingerprint regions from the COSY spectra obtained from the two forms of the protein reveals a minimum of 16 cross-peaks which are clearly shifted upon complexation. In fact, on the basis of chemical shift changes observed in assigned side-chain and main-chain resonances, only a relatively few of the amino acid residues identified to date are perturbed by complex formation. These include 3 Phe (8, 12, and 14) and the Trp in the aromatic region and 2 Ala (7 and 8) in the Ala/Thr region. In the upfield-shifted methyl region, an assigned Leu and Val spin system and a spin system labeled X10 (an Ile or Leu) are affected by complex formation. In addition, a new aliphatic spin system, labeled X11, which shows a close spatial relationship to the perturbed Phe12, is observed in this region of the spectrum. In summary, the regions of the protein altered by complex formation can be divided into two categories: a hydrophobic and a H2O-accessible domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The identification and complete assignment of the C-2 and N-1 proton nuclear magnetic resonances (NMR) of the six tryptophan residues of hen lysozyme are reported. Identification of the resonances required a detailed examination of the spectra of the protein in H2O and in 2H2O, and involved the application of spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences. Assignment was achieved by observing the effects on the NMR spectra of performing specific chemical modifications, of binding paramagnetic species (lanthanide ions and spin labels), of binding inhibitors and protons and of carrying out solvent exchange experiments. The problems involved in completion of assignment are fully discussed. In the course of performing experiments to make assignments, several interesting aspects of the behaviour of the tryptophan residues in the protein structure were observed and are discussed.  相似文献   

20.
In aqueous solution, exchanging peptide NH protons experience two environments, that of the peptide itself with a relatively slow diffusion coefficient and that of the water solvent with a faster diffusion coefficient. Although in slow exchange on the NMR chemical shift timescale, the magnetic field gradient dependence of the NH peak intensities in an experiment used to measure diffusion coefficients reflects the relative time periods spent in the two environments and this allows the determination of the relative solvent accessibility of exchangeable protons in peptides or proteins. To test this approach, the magnetic field gradient dependent intensities of the chemically shifted amide and amine NH protons of the peptide antibiotic viomycin have been measured using the high resolution longitudinal-eddy-current-delay (LED) NMR method incorporating solvent water peak elimination by non-excitation. The NH resonances of viomycin have been assigned previously and their relative exchange rates determined. Here, the gradient dependence of each NH proton intensity is reported, and these, after a bi- exponential least squares fitting, yield the fractional lifetimes of the protons spent in the peptide and water environments during the diffusion period of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号