首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Cyclic nucleotide derivatives have been used as a tool to characterize distinct catalytic sites on phosphodiesterase enzyme forms: the cGMP-stimulated enzyme from rat liver and the calmodulin-sensitive enzyme from rat or bovine brain. Under appropriate assay conditions, the analogues showed linear competitive inhibition with respect to cAMP (adenosine 3',5'-monophosphate) as substrate. The inhibition sequence of the fully activated cGMP-stimulated phosphodiesterase was identical to the inhibition sequence of the desensitized enzyme, i.e. the enzyme which has lost its ability to be stimulated by cGMP. The inhibition pattern could, therefore, not be attributed to competition with cGMP at an allosteric-activating site. Also, the inhibition sequence of the calmodulin-sensitive phosphodiesterase was maintained whether activity was basal or fully stimulated by calmodulin. When cAMP and cGMP, with identical chemical ligands substituted at the same position, were compared as inhibitors of the calmodulin-sensitive phosphodiesterase, the cGMP analogues were always the more potent suggesting that, for that enzyme, the catalytic site was sensitive to a guanine-type cyclic nucleotide structure. Comparing the two phosphodiesterases, it was possible to establish both similar and specific inhibitor potencies of cyclic nucleotide derivatives. In particular, the two enzymes exhibited large differences in analogue specificity modified at C-6, 6-chloropurine 3',5'-monophosphate or purine 3',5'-monophosphate.  相似文献   

2.
1. Cyclic adenosine 3',5'-monophosphate and N-6-2'-O-dibutyryl cyclic adenosine 3',5'-monophosphate decrease the initial entry rate and the steady-state uptake of p-aminohippurate and uric acid by rabbit kidney cortex slices. 2. N-6-2'-O-Dibutyryl adenosine 3'-5'-monophosphate inhibits the tubular transport of p-aminohippurate competitively. 3. Isoproterenol, known to increase cyclic nucleotide concentration of the cortical tubules by activation of adenyl cyclase, decreases p-aminohippurate transport. Antidiuretic hormone which is known to stimulate only medullary adenyl cyclase has no effect on p-amino-hippurate uptake by cortical slices. 4. Theophylline, which inhibits cyclic nucleotide phosphodiesterase and, therefore, enhances the cellular accumulation of endogenous cyclic nucleotide, depresses p-aminohippurate transport.  相似文献   

3.
Injection of streptozotocin in utero to fetuses elicited a premature appearance of cytosolic hepatic activity of phosphoenol pyruvate carboxykinase. This was due to a precocious initiation of the synthesis of the enzyme. The streptozotocin-induced appearance of enzyme activity was not mediated by adenosine 3':5'-monophosphate since the concentration of the cyclic nucleotide in the liver was unaffected by the antibiotic, the administration of dibutyryladenosine 3':5'-monophosphate to streptozotocin-treated fetuses elicited an additive increase in enzyme activity, and insulin administration in utero repressed the streptozotocin effect while the effect due to dibutyryladenosine 3':5'-monophosphate was not inhibited by simultaneous insulin injection. Streptozotocin treatment also caused a small but consistent retardation of fetal growth and a marked reduction of liver wet weight. Histological analysis of the liver demonstrated a premature loss of some hematopoietic elements, while hepatocytes appeared normal. Hepatic protein synthesis was unaffected by the streptozotocin treatment. Streptozotocin treatment had no effect on fetal renal phosphoenol pyruvate carboxykinase activity or kidney wet weight.  相似文献   

4.
DEAE-Bio-Gel chromatography of 100,000 X g supernatant from cultured HTC hepatoma cells separated cyclic nucleotide phosphodiesterase into three forms, numbered E I, E II, and E III in order of elution from the column, E I had a low Km for cyclic guanosine 3':5'-monophosphate (cGMP) and a high Km for cyclic adenosine 3':5'-monophosphate (cAMP), E II exhibited anomalous kinetics. At low substrate concentrations (0.5 muM) cGMP was hydrolyzed more rapidly than cAMP and hydrolysis of 0.5 muM cAMP was stimulated by 1 muM cGMP. E III had a low Km for cAMP. Incubation of cells with 1 muM dexamethasone for 72 h decreased the activity of E I and E II. In cells incubated with N6,O2'-dibutyryl cAMP plus 3-isobutyl-1-methylxanthine for 14 h the activity of E III was increased approximately 100%. Similar activities of calcium-dependent, heat stable phosphodiesterase activator were recovered from supernatants from all cells. These studies have established the presence, in a homogeneous population of hepatoma cells, of at least three forms of cyclic nucleotide phosphodiesterase, the activities of which can be independently regulated.  相似文献   

5.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

6.
The sulphatase A (aryl-sulphate sulphohydrolase, EC 3.1.6.1) of ox liver hydrolyses adenosine 3',5'-monophosphate (cyclic AMP) to adenosine 5'-phosphate at an optimum pH of approx. 4.3, close that for the hydrolysis of cerebroside sulphate, a physiological substrate for sulphatase A. The Km is 11.6 mM for cyclic AMP. On polyacrylamide gel electrophoresis sulphatase A migrates as a single protein band which coincides with both the arylsulphatase and phosphodiesterase activities, suggesting that these are due to a single protein. Cyclic AMP competitively inhibits the arylsulphatase activity of sulphatase A, showing that both activities are associated with a single active site on the enzyme. sulphatase A also hydrolyses guanosine 3',5'-monophosphate, but not uridine 3',5'-monophosphate nor adenosine 2',3'-monophosphate.  相似文献   

7.
A number of 8- and N6-SUBSTITUTED DERIVATIVES OF CYCLIC ADENOSINE 3':5'-MONOPHOSPHATE-DEPENDENT PROTEIN KINASE, AND AS SUBSTRATES FOR RAT LIVER CYCLIC NUCLEOTIDE PHOSPHODIESTERASE. All of the analogs tested were able to induce the transaminase. The induction by the analogs was shown to be the result of an actual increase in the amount of enzyme, and the mechanism of induction was an increase in the rate of synthesis of the transaminase. The induced enzyme appeared to be immunologically similar to the non-induced enzyme. A good correlation was found to exist between the dose that produced 50% of maximal induction and a combination of the activation constant for cyclic adenosine 3':5'-monophosphate-dependent protein kinase by the analog and its susceptibility to hydrolysis by cyclic nucleotide phosphodiesterase. These data suggest that the phosphorylation of some site is involved in the mechanism by which cyclic adenosine 3':5'-monophosphate affects the rate of synthesis of tyrosine aminotransferase.  相似文献   

8.
During growth under conditions of phosphate limitation, suspension-cultured cells of tomato (Lycopersicon esculentum Mill.) secrete phosphodiesterase activity in a similar fashion to phosphate starvation-inducible ribonuclease (RNase LE), a cyclizing endoribonuclease that generates 2':3'-cyclic nucleoside monophosphates (NMP) as its major monomeric products (T. Nürnberger, S. Abel, W. Jost, K. Glund [1990] Plant Physiol 92: 970-976). Tomato extracellular phosphodiesterase was purified to homogeneity from the spent culture medium of phosphate-starved cells and was characterized as a cyclic nucleotide phosphodiesterase. The purified enzyme has a molecular mass of 70 kD, a pH optimum of 6.2, and an isoelectric point of 8.1. The phosphodiesterase preparation is free of any detectable deoxyribonuclease, ribonuclease, and nucleotidase activity. Tomato extracellular phosphodiesterase is insensitive to EDTA and hydrolyzes with no apparent base specificity 2':3'-cyclic NMP to 3'-NMP and the 3':5'-cyclic isomers to a mixture of 3'-NMP and 5'-NMP. Specific activities of the enzyme are 2-fold higher for 2':3'-cyclic NMP than for 3':5'-cyclic isomers. Analysis of monomeric products of sequential RNA hydrolysis with purified RNase LE, purified extracellular phosphodiesterase, and cleared -Pi culture medium as a source of 3'-nucleotidase activity indicates that cyclic nucleotide phosphodiesterase functions as an accessory ribonucleolytic activity that effectively hydrolyzes primary products of RNase LE to substrates for phosphate-starvation-inducible phosphomonoesterases. Biosynthetical labeling of cyclic nucleotide phopshodiesterase upon phosphate starvation suggests de novo synthesis and secretion of a set of nucleolytic enzymes for scavenging phosphate from extracellular RNA substrates.  相似文献   

9.
Addition of insulin to cultured mouse plasma tumor cells (MPC-11) increases the entry of tritiated cyclic adenosine 3',5'-monophosphate (3H-cAMP). No increase of entry of N6-O2-dibutyryl adenosine 3',5' cyclic monophosphate (DBcAMP), 5' adenosine monophosphate (5' AMP) or adenosine was noted in the presence of insulin. The stimulation of cAMP transport by insulin was concentration dependent and inactivated insulin had no effect on nucleotide transport. Intracellular radioactivity after transport of cAMP was largely 5'AMP, while most of the extracellular radioactivity remained as cAMP after incubation.  相似文献   

10.
Experiments using a phosphodiesterase-minus mutant of Dictyostelium discoideum indicate that ligand-induced loss of cell surface cyclic adenosine 3':5'-monophosphate binding sites (down regulation) can be evoked with concentrations of cyclic adenosine 3':5'-monophosphate as low as 10(-8) M. The loss of receptor sites is observed after 5 min of cell preincubation with cyclic adenosine 3':5'-monophosphate and can be as extensive as 75 to 80%. This decrease in binding sites is correlated with the appearance of a slowly dissociating cyclic adenosine 3':5'-monophosphate binding component. Radioactive cyclic adenosine 3':5'-monophosphate bound to this form of receptor cannot be competed for by nonradioactive cyclic adenosine 3':5'-monophosphate or adenosine 5'-monophosphate and is not accessible to hydrolysis by cyclic adenosine 3':5'-monophosphate phosphodiesterase. The extent of appearance of this binding component is dependent upon the concentration of cyclic adenosine 3':5'-monophosphate used to elicit the down regulation response and the temperature of the incubation medium.  相似文献   

11.
A protein acting as inhibitor of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.1.) activity was found in the ox retina tissue. An inhibitor from one tissue (ox retina) effectively cross-inhibited a phosphodiesterase from another tissue (rat brain), indicating a lack of tissue specificity. Kinetic analysis showed that inhibition was independent of the time of preliminary incubation of the inhibitor with enzyme but dependent on its concentration in the reaction mixture. An inhibitor decreased the V of the enzyme and had no effect on its Km for cyclic adenosine-3':5'-monophosphate. The inhibitory effect was more pronounced with cyclic adenosine-3':5'-monophosphate than with cyclic guanosine-3':5'-monophosphate used as substrates of the reaction. The extractable form of the phosphodiesterase of the retina rod outer segments was much more sensitive to the inhibitory action than the membrane-bound one. The binding of labeled cyclic adenosine-3':5'-monophosphate to the inhibitory protein was shown not to occur. The inhibitor was sensitive to trypsin treatment, indicating that it was a proten attempt was mode to purify the inhibitory factor. Gel filtration indicated that the inhibitor had a molecular weight of 38 000.  相似文献   

12.
The effect of starvation on the activity of hepatic phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), and on the response of the enzyme to N6-O2'dibutyryl adenosine 3', 5'-monophosphate was investigated in intact and glucocorticoid-deprived rats. In the liver of intact animals, starvation produced a rapid increase in the concentration of cyclic AMP and a corresponding increase in the activity of phosphoenolpyruvate carboxykinase. The kinetics of both changes were not affected by adrenalectomy. Injection of N6-O2'-dibutyryl adenosine 3', 5'-monophosphate into intact starved rats resulted in an immediate, dramatic increase in phosphoenolpyruvate carboxykinase activity above the starvation level. Adrenalectomy completely blocked the response of the enzyme to the cyclic nucleotide. Restoration of hydrocortisone to the adrenalectomized animals restored the full N6-I2'dibutyryl adenosine 3', 5'-monophosphate effect after a lag period of 2 h. The physiological significance of these findings is considered. The data are interpreted with regard to the current hypothesis that glucocorticoids promote an increase in translatable phosphoenolpyruvate carboxykinase mRNA, while cyclic AMP enhances the translation of preexisting specific mRNA templates.  相似文献   

13.
We have demonstrated that in Chinese hamster ovary (CHO) cells, N6,O2'-dibutyryl adenosine cyclic 3':5'-monophosphate (dibutyryl cyclic AMP) has a remarkable morphogenetic effect in converting cells of a compact, epithelial-like morphology into a spindle-shaped, fibroblast-like form. Homogenates of CHO cells were found to contain two adenosine cyclic 3':5'-monophosphate (cyclic AMP) phosphodiesterase (EC 3.1.4.c) activities, which differ in apparent Km with respect to their substrate, cyclic AMP. These were designated cyclic AMP phosphodiesterase I, with a low Km of 2 to 5 muM and cyclic AMP phosphodiesterase II, with a high Km of 1 to 3 mM. Cyclic AMP phosphodiesterase I was competitively inhibited by N6-monobutyryl and dibutyryl cyclic AMP, with apparent Ki values of 40 to 60 muM and 0.25 to 0.35 mM, respectively. Experimental evidence demonstrates that the effect of exogenous dibutyryl cyclic AMP on cell morphology is a result of an increase in the endogenous level of cyclic AMP. This increase appears to be due largely to the inhibitory action of intracellular N6-monobutyryl cyclic AMP on cyclic AMP phosphodiesterase I, which results in a decreased rate of degradation of intracellular cyclic AMP.  相似文献   

14.
Human blood platelet contained at least three kinetically distinct forms of 3': 5'-cyclic nucleotide phosphodiesterase (3': 5'-cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) (F I, F II, and F III) which were clearly separated by DEAE-cellulose column chromatography. Although a few properties of the platelet phosphodiesterases such as their substrate affinities and DEAE-cellulose profile resembled somewhat those of the three 3': 5'-cyclic nucleotide phosphodiesterase in rat liver reported by Russell et al. [10], there were pronounced differences in some properties between the platelet and the liver enzymes: (1) the platelet enzymes hydrolyzed both cyclic nucleotides and lacked a highly specific cyclic guanosine 3': 5'-monophosphate (cyclic GMP) phosphodiesterase and (2) kinetic data of the platelet enzymes indicated that cyclic adenosine 3': 5'-monophosphate (cyclic AMP) and cyclic GMP interact with a single catalytic site on the enzyme. F I was a cyclic nucleotide phosphodiesterase with a high Km for cyclic AMP and a negatively cooperative low Km for cyclic GMP. F II hydrolyzed cyclic AMP and cyclic GMP about equally with a high Km for both substrates. F III was low Km phosphodiesterase which hydrolyzed cyclic AMP faster than cyclic GMP. Each cyclic nucleotide acted as a competitive inhibitor of the hydrolysis of the other nucleotide by these three fractions with Ki values similar to the Km values for each nucleotide suggesting that the hydrolysis of both cyclic AMP and cyclic GMP was catalyzed by a single catalytic site on the enzyme. However, cyclic GMP at low concentration (below 10 muM) was an activator of cyclic AMP hydrolysis by F I. Papaverine and EG 626 acted as competitive inhibitors of each fraction with virtually the same Ki value in both assays using either cyclic AMP or cyclic GMP as the substrate. The ratio of cyclic AMP hydrolysis to cyclic GMP hydrolysis by each fraction did not vary significantly after freezing/thawing or heat treatment. These facts also suggest that both nucleotides were hydrolyzed by the same catalytic site on the enzyme. The differences in apparent Ki values for inhibitors such as cyclic nucleotides, papaverine and EG 626 would indicate that three enzymes were different from each other. Centrifugation in a continuous sucrose gradient revealed sedimentation coefficients F I and II had 8.9 S and F III 4.6 S. The molecular weight of these forms, determined by gel filtration on a Sepharose 6B column, were approx. 240 000 (F I and II) and 180 000 (F III). F III was purified extensively (70-fold) from homogenate, with a recovery of approximately 7%.  相似文献   

15.
Evidence is presented that modulation of the maximum velocity of a particulate low K-m cyclic adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase by thyroid hormones is one mechanism for the regulation of the responsiveness of rat epididymal adipocytes to lipolytic agents such as epinephrine and glucagon. Fat cells of propylthiouracil-induced hypothyroid rats are unresponsive to lipolytic agents and the V-max of particulate low K-m cyclic AMP phosphodiesterase of these cells is elevated above normal. In vivo treatment of hypothyroid rats with triiodothyronine restores to control values both the lipolytic response of the fat cells to epinephrine and the V-max of the particulate bound low K-m cyclic AMP phosphodiesterase. No similar correlation is found with the soluble high K-m cyclic AMP phosphodiesterase. The phosphodiesterases of fat cells from normal and hypothyroid rats respond identically in vitro to propylthiouracil, triiodothyronine, methylisobutylxanthine, or theophylline, although the particulate low K-m cyclic AMP phosphodiesterase is inhibited to a greater extent than soluble cyclic guanosine 3':5'-monophosphate phosphodiesterase activity. Protein kinase of fat cells from hypothyroid rats can be stimulated by cyclic AMP to the same total activity as observed in fat cells of normal rats. However, less of the protein kinase in fat cells from hypothyroid rats was in the cyclic AMP-independent form. This shift in the equilibrium of protein kinase forms is consistent with an increased activity of low K-m cyclic AMP phosphodiesterase and probably results from a lowering of the lipolytically significant pool of cyclic AMP.  相似文献   

16.
Adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase activity of normal human peripheral blood leukocyte suspensions containing 90% lymphocytes and 10% monocytes showed anomalous kinetic behavior indicative of multiple enzyme forms. Kinetic analyses of purified lymphocyte (99%) or monocyte preparations (95%) indicated that only one type of phosphodiesterase was present in each cell type. None of the preparations contained any detectable guanosine 3':5'-monophosphate (cyclic GMP) hydrolytic activity. The lymphocyte enzyme had an apparent Km congruent to 0.4 muM for cyclic AMP and Vmax congruent to 0.5 picomoles/min/10(6) cells. These kinetic parameters were confirmed by several cell purification techniques used alone and sequentially. Sedimentation velocity analyses indicated that the higher Km monocyte enzyme had a molecular weight near 45,000 and that the lower Km lymphocyte enzyme most likely had a molecular weight near 98,000. A variety of procedures led to a loss of the higher molecular weight, high affinity enzyme leaving only the enzyme of 45,000 daltons with a much lower substrate affinity. A long term, stable human lymphoblastoid cell line had cyclic AMP phosphodiesterase activity that was similar to the lymphocyte enzyme by both physical and kinetic criteria. Lymphocyte cyclic AMP phosphodiesterase appears to be a soluble enzyme whose pH and temperature optima and cationic requirements are similar to those of other mammalian phosphodiesterases. The distinct cyclic AMP phosphodiesterase forms of these cells may possibly represent the basic, active subunit of mammalian cyclic nucleotide phosphodiesterases. We hypothesize that the extremely high affinity cyclic AMP phosphodiesterase of normal lymphocytes plays an important role in the regulation of normal function in these cells, and also in the rapid proliferative responses characteristic of the stimulated lymphocyte.  相似文献   

17.
Contact of rat platelets with thrombin or the divalent cation ionophore A-23187, in the presence of extracellular calcium, resulted in the secretion of adenosine 3':5'-monophosphate (cyclic AMP) and guanosine 3':5'-monophosphate (cyclic GMP) phosphodiesterases. Significant association of calcium with platelets occurred during platelet surface contact with thrombin. Thrombin concentration to induce association of calcium virtually agreed with that to release the enzyme. The finding that A-23187 (5 to 20 muM) also provoked a rapid and marked association of extracellular calcium with platelets suggests that calcium mobilization into the intracellular environment may account, at least in part, for this association between platelet and calcium. Two different phosphodiesterases, a relatively specific cyclic AMP and a relatively specific cyclic GMP phosphodiesterase were secreted from platelets into the plasma in soluble form. The amounts of the phosphodiesterases secreted were dose- or time-dependent on thrombin (0.1 to 2 units) or A-23187 (5 to 20 muM) within 30 min. The enzyme release by thrombin was completely inhibited by heparin but the release by A-23187 was not. The two phosphodiesterases secreted seemed to correspond to the two enzymes isolated from platelet homogenates in many respects. Rat platelets contained, at least, three cyclic 3':5'-nucleotide phosphodiesterases, namely, two relatively specific cyclic AMP phoshodiesterases and a relatively specific cyclic GMP phosphodiesterase which were clearly separated from each other by Sepharose 6B or DEAE-cellulose column chromatography or sucrose gradient centrifugation. The two platelet cyclic AMP phosphodiesterase (Mr = 180,000 and 280,000) had similar apparent Km values of 0.69 and 0.75 muM with different sedimentation coefficient values of 4.9 S and 7.1 S, respectively. They did not hydrolyze cyclic GMP significantly. A cyclic GMP phosphodiesterase (Mr - 260,000) exhibited abnormal kinetics for cyclic GMP with an apparent Km value of 1.5 muM and normal kinetics for cyclic AMP with a Km of 300 muM. The properties of a platelet cyclic AMP phosphodiesterase (Mr = 180,000) and a platelet cyclic GMP phosphodiesterase were found to agree with those of the two phosphodiesterases released from platelets by thrombin or A-23187. Depletion of extracellular calcium by an addition of citrate, EDTA, or ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) to the blood or platelet suspension resulted in a loss of the activity of the smaller form of platelet cyclic AMP phosphodiesterase (Mr = 180,000) and addition of calcium restored the activity of this cyclic AMP phosphodiesterase. Thus, calcium seemed to be involved in the mechanism of an occurrence of this smaller form of cyclic AMP phosphodiesterase as well as the secretion of this enzyme. Contact of human platelets with thrombin also resulted in the secretion of cyclic nucleotide phosphodiesterase which was dependent on the concentration of calcium. No species difference was observed in this respect.  相似文献   

18.
Brain cytoplasmic cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) requires an endogenous Ca2+-binding protein for ful activity. We now show that lysophosphatidylcholine also effectively enhances activator-deficient phosphodiesterase activity. Stimulation by both ligands was immediate and reversible; both rendered the enzyme more thermally labile, decreased the energy of activation, and increased the Vmax of phosphodiesterase without affecting its apparent Km for adenosine 3'5'-monophosphate. However, the cofactor requirements of the two ligands were different. Although the protein activator gave a greater stimulation than lysophosphatidylcholine, the simultaneous presence of the two gave a stimulation comparable to lysophosphatidylcholine, suggesting that the effect of the latter was predominant. Phosphodiesterase was also stimulated by oleic acid, cardiolipin, and phosphatidylinositol, albeit to a less extent.  相似文献   

19.
Cytoplasmic and nuclear protein kinase activities from perfused rat liver have been studied in response to dibutyryl-adenosine cyclic 3':5'-monophosphate added at a concentration that stimulates hepatic gluconeogenesis (100 muM). Total nuclear protein kinase, as assayed using a mixed histone fraction as phosphate acceptor, is increased by 5-fold within 8 min of the addition of cyclic nucleotide to the perfusate. In contrast the total cytoplasmic protein kinase activity is decreased to 50% of the control value. The protein substrate specificity of the protein kinase that is present in the nucleus in response to dibutyryl-adenosine cyclic 3':5'-monophosphate stimulation is similar to that of cytoplasmic, adenosine cyclic 3':5'-monophosphate-dependent, protein kinase but is distinct from that of the enzyme(s) present in control nuclei. The predominant species to protein kinase from stimulated nuclei has a sedimentation constant of 3.9 S. This value is identical to that of the catalytic subunit of cytoplasmic adenosine 3':5'-monophosphate-dependent protein kinase. These data suggest that some of the effects of adenosine 3':5'-monophosphate on nuclear events may be mediated through its interaction with the inactive protein kinase holoenzyme in the cytoplasm and the subsequent redistribution of the active catalytic subunits generated by this interaction.  相似文献   

20.
Part of the soluble cyclic nucleotide phosphodiesterase activity of crude human lung tissue can be attributed to a thermosensitive (37 degrees) enzyme with a high apparent affinity for both adenosine 3':5'-monophosphate (cyclic AMP) and guanosine 3':5'-monophosphate (cyclic GMP). The enzyme can be partially purified by DEAE-Sephadex chromatography. In the presence of 0.1 mM EDTA or ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA), it is eluted from the column immediately before a cyclic GMP-specific phosphodiesterase, but in the presence of 0.2 mM Ca2+, the elution follows that of the cyclic GMP-specific enzyme. The two forms of the nonspecific phosphodiesterase activity are referred to as DEAD-Sephadex Fractions Ia and Ic, respectively. Their apparent molecular weights, recorded at gel filtration, vary with different preparations from 230,000 to 150,000. Occasionally, corresponding recordings for main peaks of activity also cluster round the values 120,000, 105,000, and 78,000. The enzymatic properties of Fractions Ia and Ic closely resemble each other. The enzyme activity is blocked by EDTA, partially inhibited in the presence of 1,10-phenanthroline, but only slightly affected by EGTA. The inhibitory effect of EDTA can be overcome by Mg2+ and Mn2+ and that of 1,10-phenanthroline, in part, by Zn2+; this cation in itself is inhibitory at millimolar concentrations. With submicromolar substrate concentrations, the activity of either fraction obeys linear kinetics displaying an apparent Km of approximately 0.4 micron for both substrates. Reciprocal inhibition experiments suggest that hydrolysis of both cyclic AMP and cyclic GMP is performed by the same active site. Examination of the activity using extended substrate concentration ranges indicates nonlinear kinetics; Hill plots of such data also show nonlinear curvature. The activity is inhibited by micromolar concentrations of inosine 3':5'-monophosphate (cyclic IMP), 3-isobutyl-1-methylxanthine, papervine, and some antiallergic agents. Theophylline and disodium cromoglycate are less potent inhibitors. Inhibition of activity by Lubrol PX follows a biphasic dose response curve. The activity of Fraction Ia can be enhanced 2- to 3-fold by a Ca2+-dependent activator prepared from lung tissue, whose action is counteracted by chlorpromazine, and by lysophosphatidylcholine. It is initially enhanced but subsequently decreased at exposure to trypsin. Fraction Ic is less prone to activation by these agents. The results indicate that the present activity represents an enzyme form that differs from three previously described phosphodiesterases of human lung tissue. It is apparently related to, but also shows distinct differences from the Ca2+-dependent enzyme(s) of brain and heart tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号