首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhabdoviruses such as rabies virus (RV) encode only five multifunctional proteins accomplishing viral gene expression and virus formation. The viral phosphoprotein, P, is a structural component of the viral ribonucleoprotein (RNP) complex and an essential cofactor for the viral RNA-dependent RNA polymerase. We show here that RV P fused to enhanced green fluorescent protein (eGFP) can substitute for P throughout the viral life cycle, allowing fluorescence labeling and tracking of RV RNPs under live cell conditions. To first assess the functions of P fusion constructs, a recombinant RV lacking the P gene, SAD DeltaP, was complemented in cell lines constitutively expressing eGFP-P or P-eGFP fusion proteins. P-eGFP supported the rapid accumulation of viral mRNAs but led to low infectious-virus titers, suggesting impairment of virus formation. In contrast, complementation with eGFP-P resulted in slower accumulation of mRNAs but similar infectious titers, suggesting interference with polymerase activity rather than with virus formation. Fluorescence microscopy allowed the detection of eGFP-P-labeled extracellular virus particles and tracking of cell binding and temperature-dependent internalization into intracellular vesicles. Recombinant RVs expressing eGFP-P or an eGFP-P mutant lacking the binding site for dynein light chain 1 (DLC1) instead of P were used to track interaction with cellular proteins. In cells expressing a DsRed-labeled DLC1, colocalization of DLC1 with eGFP-P but not with the mutant P was observed. Fluorescent labeling of RV RNPs will allow further dissection of virus entry, replication, and egress under live-cell conditions as well as cell interactions.  相似文献   

2.
3.
4.
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a formidable battle horse for the study of viral immunology, as well as viral persistence and associated diseases. Investigations with LCMV have uncovered basic mechanisms by which viruses avoid elimination by the host adaptive immune response. In this study we show that LCMV also disables the host innate defense by interfering with beta interferon (IFN-beta) production in response to different stimuli, including infection with Sendai virus and liposome-mediated DNA transfection. Inhibition of IFN production in LCMV-infected cells was caused by an early block in the IFN regulatory factor 3 (IRF-3) activation pathway. This defect was restored in cells cured of LCMV, indicating that one or more LCMV products are responsible for the inhibition of IRF-3 activation. Using expression plasmids encoding individual LCMV proteins, we found that expression of the LCMV nucleoprotein (NP) was sufficient to inhibit both IFN production and nuclear translocation of IRF-3. To our knowledge, this is the first evidence of an IFN-counteracting viral protein in the Arenaviridae family. Inhibition of IFN production by the arenavirus NP is likely to be a determinant of virulence in vivo.  相似文献   

5.
6.
7.
8.
Virus infection triggers innate responses to host cells including production of type I interferon (IFN). Since IFN production is also induced by treatment with poly(I:C), viral double-stranded (ds) RNA has been postulated to play a direct role in the process. In the present study, we investigated the effect of dsRNA binding proteins on virus-induced activation of the IFN-beta gene. We found that PACT, originally identified as protein activator for dsRNA-dependent protein kinase (PKR) and implicated in the regulation of translation, augmented IFN-beta gene activation induced by Newcastle disease virus. Concomitantly with the augmented activity of IFN-beta enhancer, increased activity of NF-kappaB and IRF-3 and IRF-7 was observed. For the observed effect, the dsRNA-binding activity of PACT was essential. We identified residues of PACT that interact with a presumptive target molecule to exert its function. Furthermore, PACT colocalized with viral replication complex in the infected cells. Thus the observed effect of PACT is novel and PACT is involved in the regulation of viral replication and results in a marked increase of cellular IFN-beta gene expression.  相似文献   

9.
10.
11.
12.
13.
Interferon regulatory factor 1 (IRF-1) is a protein that binds to cis-elements within the promoter of interferon (IFN)-beta and some IFN-inducible genes. We used a human fibroblast line, GM-637, to generate stable transfectants constitutively expressing IRF-1 mRNA in either the sense or antisense orientation. Upon induction with poly-(I).poly(C) or Newcastle disease virus, cells expressing sense IRF-1 mRNA produced significantly higher levels of IFN-beta mRNA and protein than control cells, whereas cells expressing antisense IRF-1 mRNA produced little or no IFN-beta mRNA and protein. Furthermore, clear differences were seen among the transfectants in the level of expression of two IFN-induced genes (2'-5'-oligoadenylate synthetase and class I HLA). Our data show that IRF-1 is essential for the induced expression of the IFN-beta gene. The results also indicate an important role of IRF-1 in the expression of IFN-inducible genes and suggest a role for IRF-1 in many other cytokine actions.  相似文献   

14.
15.
Retinoic acid inducible gene-I (RIG-I) functions as the first line of defense against viral infection by sensing dsRNA and inducing type I interferon (IFN) production. The expression of RIG-I itself is induced by IFN-alpha/beta and dsRNA. To comprehend the molecular mechanism of expression regulation, we cloned the RIG-I promoter and analyzed its activity upon IFN-beta and dsRNA treatment. Under basal condition, RIG-I mRNA level and promoter activity were significantly higher in normal cells versus their tumor counterparts. In both normal and cancer cells, RIG-I expression was induced by IFN-beta and dsRNA. A single IRF-1 binding site in the proximal promoter functioned as a crucial regulator of basal, IFN-beta- and dsRNA-mediated induction of the RIG-I promoter. IFN-beta and dsRNA treatment increased IRF-1 binding to the RIG-I promoter. IRF-1 expression was also higher in normal cells than in cancer cells and it was induced by IFN-beta with similar kinetics as RIG-I. These results confirm that by controlling RIG-I expression, IRF-1 plays an essential role in anti-viral immunity. IRF-1 is a tumor suppressor and the expression profile of RIG-I together with its regulation by IRF-1 and the presence of a caspase-recruitment domain in RIG-I suggest that RIG-I might also possess tumor suppressor properties.  相似文献   

16.
17.
18.
19.
Interferon (IFN) signal transduction involves interferon regulatory factors (IRF). Kaposi's sarcoma-associated herpesvirus (KSHV) encodes four IRF homologues: viral IRF 1 (vIRF-1) to vIRF-4. Previous functional studies revealed that the first exon of vIRF-2 inhibited alpha/beta interferon (IFN-alpha/beta) signaling. We now show that full-length vIRF-2 protein, translated from two spliced exons, inhibited both IFN-alpha- and IFN-lambda-driven transactivation of a reporter promoter containing the interferon stimulated response element (ISRE). Transactivation of the ISRE promoter by IRF-1 was negatively regulated by vIRF-2 protein as well. Transactivation of a full-length IFN-beta reporter promoter by either IRF-3 or IRF-1, but not IRF-7, was also inhibited by vIRF-2 protein. Thus, vIRF-2 protein is an interferon induction antagonist that acts pleiotropically, presumably facilitating KSHV infection and dissemination in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号