首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The HupT protein of Rhodobacter capsulatus, involved in negative regulation of hydrogenase gene expression, is predicted to be a histidine kinase on the basis of sequence comparisons. The protein was overproduced in Escherichia coli, purified to homogeneity, and demonstrated to autophosphorylate in vitro in the presence of [gamma-32P]ATP. An H217N hupt mutant was constructed, and the mutant protein was shown to have lost kinase activity. This result, and the fact that the phosphoryl group in phosphorylated HupT appeared to be bound to an N atom, support the suggestion from sequence comparisons that HupT is a histidine kinase, which can autophosphorylate on the His217 residue.  相似文献   

3.
Abstract The Rhodobacter capsulatus recA gene has been isolated and sequenced. Its deduced amino acid sequence showed the closest identity with the Rhodobacter sphaeroides RecA protein (91% identity). However, the promoter regions of both R. capsulatus and R. sphaeroides recA genes are only 64% similar. An Escherichia coli -like LexA binding site was not present in the upstream region of the R. capsulatus recA gene. Nevertheless, the R. capsulatus recA gene is inducible by DNA damage in both hetero- and phototrophically growing conditions. The R. capsulatus recA gene is poorly induced when inserted into the chromosome of R. sphaeroides , indicating that the recA gene of both bacteria possess different control sequences despite their phylogenetically close relationship.  相似文献   

4.
5.
6.
Rhodobacter capsulatus synthesizes two homologous protein complexes capable of activating molecular H(2), a membrane-bound [NiFe] hydrogenase (HupSL) linked to the respiratory chain, and an H(2) sensor encoded by the hupUV genes. The activities of hydrogen-deuterium (H-D) exchange catalyzed by the hupSL-encoded and the hupUV-encoded enzymes in the presence of D(2) and H(2)O were studied comparatively. Whereas HupSL is in the membranes, HupUV activity was localized in the soluble cytoplasmic fraction. Since the hydrogenase gene cluster of R. capsulatus contains a gene homologous to hoxH, which encodes the large subunit of NAD-linked tetrameric soluble hydrogenases, the chromosomal hoxH gene was inactivated and hoxH mutants were used to demonstrate the H-D exchange activity of the cytoplasmic HupUV protein complex. The H-D exchange reaction catalyzed by HupSL hydrogenase was maximal at pH 4. 5 and inhibited by acetylene and oxygen, whereas the H-D exchange catalyzed by the HupUV protein complex was insensitive to acetylene and oxygen and did not vary significantly between pH 4 and pH 11. Based on these properties, the product of the accessory hypD gene was shown to be necessary for the synthesis of active HupUV enzyme. The kinetics of HD and H(2) formed in exchange with D(2) by HupUV point to a restricted access of protons and gasses to the active site. Measurement of concentration changes in D(2), HD, and H(2) by mass spectrometry showed that, besides the H-D exchange reaction, HupUV oxidized H(2) with benzyl viologen, produced H(2) with reduced methyl viologen, and demonstrated true hydrogenase activity. Therefore, not only with respect to its H(2) signaling function in the cell, but also to its catalytic properties, the HupUV enzyme represents a distinct class of hydrogenases.  相似文献   

7.
In Rhodobacter capsulatus, the hupL gene encoding the large subunit of the uptake-hydrogenase (Hup) enzyme complex was mutated by insertion of an interposon. The mutant neither synthesized an active hydrogenase nor grew photoautotrophically. Under conditions of nitrogen (N) limitation, photoheterotrophic cultures of the wild type and the mutant evolved H2 by activity of the nitrogenase enzyme complex. When grown with glutamate as an N source and either d,l-malate or l-lactate as carbon sources, the efficiency of H2 production by the HupL mutant was higher than 90%, whereas wild-type cultures exhibited efficiencies of 54% (with d,l-malate) and 64% (with l-lactate), respectively. With NH inf4 sup+ as the N source, efficiencies of H2 production were 70% (mutant) and 52% (wild type). Correspondence to: J. Oelze  相似文献   

8.
9.
10.
11.
The imprinted region on mouse distal chromosome 12 covers about 1 Mb and contains at least three paternally expressed genes (Pegs: Peg9/Dlk1, Peg11/Rtl1, and Dio3) and four maternally expressed genes (Megs: Meg3/Gtl2, antiPeg11/antiRlt1, Meg8/Rian, and Meg9/Mirg). Gtl2(lacZ) (Gene trap locus 2) mice have a transgene (TG) insertion 2.3 kb upstream from the Meg3/Gtl2 promoter and show about 40% growth retardation when the TG-inserted allele is paternally derived. Quantitative RT-PCR experiments showed that the expression levels of Pegs in this region were reduced below 50%. These results are consistent with the observed phenotype in Gtl2lacZ mice, because at least two Pegs(Peg9/Dlk1 and Dio3) have growth-promoting effects. The aberrant induction of Megs from silent paternal alleles was also observed in association with changes in the DNA methylation level of a differentially methylated region (DMR) located around Meg3/Gtl2 exon 1. Interestingly, a 60 approximately 80% reduction in all Megs was observed when the TG was maternally derived, although the pups showed no apparent growth or morphological abnormalities. Therefore, the paternal or maternal inheritance of the TG results in the down-regulation in cis of either Pegs or Megs, respectively, suggesting that the TG insertion influences the mechanism regulating the entire imprinted region.  相似文献   

12.
Cloning of the Rhodobacter capsulatus hemA gene.   总被引:1,自引:1,他引:0       下载免费PDF全文
Portions of the Rhodobacter capsulatus hemA gene have been cloned from a hemA::Tn5 insertion strain into the lambda bacteriophage derivative EMBL3. A cosmid containing the wild-type R. capsulatus hemA gene was isolated by complementation of the hemA::Tn5 mutant. The cosmid contains a 1.4-kilobase EcoRI fragment that spans the hemA::Tn5 insertion site. The entire hemA gene is contained in this fragment and the adjacent 0.6-kilobase EcoRI fragment.  相似文献   

13.
The hupT, hupU, and hupV genes, which are located upstream from the hupSLC and hypF genes in the chromosome of Rhodobacter capsulatus, form the hupTUV operon expressed from the hupT promoter. The hupU and hupV genes, previously thought to belong to a single open reading frame, encode HupU, of 34.5 kDa (332 amino acids), and HupV, of 50.4 kDa (476 amino acids), which are >/= 50% identical to the homologous Bradyrhizobium japonicum HupU and HupV proteins and Rhodobacter sphaeroides HupU1 and HupU2 proteins, respectively; they also have 20 and 29% similarity with the small subunit (HupS) and the large subunit (HupL), respectively, of R. capsulatus [NiFe]hydrogenase. HupU lacks the signal peptide of HupS and HupV lacks the C-terminal sequence of HupL, which are cleaved during hydrogenase processing. Inactivation of hupV by insertional mutagenesis or of hupUV by in-frame deletion led to HupV- and Hup(UV)- mutants derepressed for hydrogenase synthesis, particularly in the presence of oxygen. These mutants were complemented in trans by plasmid-borne hupTUV but not by hupT or by hupUV, except when expressed from the inducible fru promoter. Complementation of the HupV- and Hup(UV)- mutants brought about a decrease in hydrogenase activity up to 10-fold, to the level of the wild-type strain B10, indicating that HupU and HupV participate in negative regulation of hydrogenase expression in concert with HupT, a sensor histidine kinase involved in the repression process. Plasmid-borne gene fusions used to monitor hupTUV expression indicated that the operon is expressed at a low level (50- to 100-fold lower than hupS).  相似文献   

14.
15.
Many proteobacteria use acyl-homoserine lactones as quorum-sensing signals. Traditionally, biological detection systems have been used to identify bacteria that produce acyl-homoserine lactones, although the specificities of these detection systems can limit discovery. We used a sensitive approach that did not require a bioassay to detect production of long-acyl-chain homoserine lactone production by Rhodobacter capsulatus and Paracoccus denitrificans. These long-chain acyl-homoserine lactones are not readily detected by standard bioassays. The most abundant acyl-homoserine lactone was N-hexadecanoyl-homoserine lactone. The long-chain acyl-homoserine lactones were concentrated in cells but were also found in the culture fluid. An R. capsulatus gene responsible for long-chain acyl-homoserine lactone synthesis was identified. A mutation in this gene, which we named gtaI, resulted in decreased production of the R. capsulatus gene transfer agent, and gene transfer agent production was restored by exogenous addition of N-hexadecanoyl-homoserine lactone. Thus, long-chain acyl-homoserine lactones serve as quorum-sensing signals to enhance genetic exchange in R. capsulatus.  相似文献   

16.
17.
18.
M W Sganga  C E Bauer 《Cell》1992,68(5):945-954
Most species of photosynthetic bacteria synthesize their photosynthetic apparatus only under conditions of reduced oxygen tension. To a large extent, this phenomenon is dependent upon anaerobic induction of photosynthesis gene expression. Here we report an example of a regulatory gene, regA, that is involved in transactivating anaerobic expression of the photosynthetic apparatus. We show that RegA is itself responsible for differential induction of light-harvesting and reaction center gene expression relative to operons for photopigment biosynthesis. Surprisingly, strains disrupted for regA were found to retain normal photosynthetic growth capabilities under high light intensities. We further show that photosynthetic growth in the absence of transactivating structural gene expression is a consequence of the superoperonal organization of the photosynthetic gene cluster.  相似文献   

19.
20.
Mutants of Rhodobacter capsulatus unable to grow photoautotrophically with H2 and CO2 were isolated. Those lacking uptake hydrogenase activity as measured by H2-dependent methylene blue reduction were analyzed genetically and used in complementation studies for the isolation of the wild-type genes. Results of further subcloning and transposon Tn5 mutagenesis suggest the involvement of a minimum of five genes. Hybridization to the 2.2-kilobase-pair SstI fragment that lies within the coding region for the large and small subunits of Bradyrhizobium japonicum uptake hydrogenase showed one region of strong homology among the R. capsulatus fragments isolated, which we interpret to mean that one or both structural genes were among the genes isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号