首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The incorporation of d-[1-(14)C]mannose, d-[2-(3)H]mannose and N-acetyl-d-[1-(14)C]-glucosamine into glycoproteins and lipid-linked intermediates of mammary explants obtained from lactating rabbits was studied. The amount of radioactivity incorporated into lipid-linked intermediates was very low compared with the incorporation into protein. Most of the radioactivity incorporated into the chloroform/methanol-soluble fraction was present as neutral lipid. Radioactivity from d-[2-(3)H]mannose was incorporated mainly into the fatty acid moiety, whereas radioactivity from d-[1-(14)C]mannose and N-acetyl-d-[1-(14)C]glucosamine was present in the glycerol moiety of triacylglycerol. 2. The labelled lipid-linked intermediate that was soluble in chloroform/methanol/water (10:10:3, by vol.) was partially characterized and was found to exhibit properties characteristic of an oligosaccharide linked to lipid via a pyrophosphate bridge. It migrated largely as a single zone of radioactivity on t.l.c. and was eluted from a column of DEAE-cellulose acetate as a single peak by 50mm-ammonium acetate. 3. The oligosaccharide moiety was released from the lipid by mild acid hydrolysis. The size of the oligosaccharide was estimated by paper chromatography to be 10 or 11 monosaccharide units. 4. d-[1-(14)C]Mannose was incorporated largely into glycopeptides with molecular weights in the range 40000-80000, as determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Label from N-acetyl-d-[1-(14)C]glucosamine was incorporated into a glycopeptide with an electrophoretic mobility identical with that of rabbit casein (mol.wt. 32000) as well as into glycopeptides of higher molecular weight. 5. Approx. 50% of the total radioactivity in the protein labelled from N-acetyl-d-[1-(14)C]glucosamine was present as galactosamine, a component of the carbohydrate portion of rabbit casein. No labelled galactosamine was present in the lipid-linked oligosaccharide labelled from N-acetyl-d-[1-(14)C]glucosamine. It thus appears that the lipid-linked oligosaccharide is not involved in the glycosylation of casein.  相似文献   

2.
1. Cycloheximide inhibited immediately the incorporation of L-[4,5-3H]leucine and D-]2-3H]mannose into mammary proteins, suggesting that the mannosylation of mammary glycoproteins requires the continued supply of newly synthesized polypeptides. 2. The incorporation of radioactivity from N-acetyl-D-[1-14C] glucosamine into protein was not inhibited until approx. 30 min after cycloheximide addition. Much (greater than 90%) of this radioactivity was present as N-acetylgalactosamine. 3. N-Glycosylation appears to be inhibited immediately by cycloheximide due to a lack of newly synthesized acceptor polypeptides, whereas O-glycosylation continues for 30 min, the time taken for acceptor peptides to move from their site of synthesis to the Golgi region and for completion of glycosylation. 4. There was a transient increase in the incorporation of mannose into lipid-linked oligosaccharide in the presence of cycloheximide, followed by a decrease in the radioactivity in this fraction. 5. The major lipid-linked oligosaccharide extracted from explants incubated for 2h in the presence of cycloheximide (6-7 monosaccharide units) was smaller than that extracted from control explants (10-12 monosaccharide units).  相似文献   

3.
1. Explants of mammary glands of pregnant rabbits cultured in the absence of insulin, prolactin and cortisol incorporated [2-3H]mannose into lipid-linked mono- and oligo-saccharide and protein. 2. Inclusion of the hormones in the culture medium stimulated the incorporation of [2-3H]mannose into lipid-linked monosaccharide 4-fold, into lipid-linked oligosaccharide 4-fold and into protein 13-fold after 24 h in culture. 3. Addition of tunicamycin to the incubation medium completely inhibited the incorporation of [2-3H]mannose into lipid-linked oligosaccharide and protein after an initial lag period of about 2h. Incorporation of this radiolabel into lipid-linked monosaccharide was increased 4-fold under these conditions. 4. Incorporation of [4,5-3H]leucine into protein was unaffected by the presence of tunicamycin. 5. Analysis of mannose-labelled protein by polyacrylamide-gel electrophoresis indicated that a major radiolabelled protein of apparent mol.wt. 65,000-70,000 was synthesized and approx. 70% of this protein appeared in the soluble fraction. 6. Glycosylation of the protein but not synthesis of its peptide backbone was sensitive to tunicamycin. 7. Possible origins of this glycoprotein synthetized when the tissue is stimulated to differentiate in culture are discussed.  相似文献   

4.
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis.  相似文献   

5.
The particulate enzyme from pig aorta catalyzed the transfer of glucose from UDP-glucose into glucosyl-phosphoryl-dolichol, into lipid-linked oligosaccharides, and into glycoprotein. Radioactive lipid-linked oligosaccharides were prepared by incubating the extracts with GDP-[14C]mannose and UDP-[3H]glucose. When the labeled oligosaccharides were run on Bio-Gel P-4, the two different labels did not exactly coincide; the 3H peak eluted slightly earlier indicating that it was of higher molecular weight than the 14C material, but there was considerable overlap. The purified oligosaccharide(s) contained glucose, mannose, and N-acetylglucosamine but the ratios of these sugars varied from one enzyme preparation to another, probably depending on the endogenous oligosaccaride-lipids present in the microsomal preparation. Treatment of the [3H]glucose-labeled oligosaccharide with α-mannosidase gave rise to a 3H-labeled oligosaccharide which moved somewhat faster on Bio-Gel P-4 than the original oligosaccharide, suggesting it had lost one or two sugar residues. These data indicate that mannose and glucose are in the same oligosaccharide. The antibiotic, amphomycin, inhibited the transfer of glucose from UDP-glucose into the lipid-linked saccharides. However the synthesis of glucosyl-phosphoryl-dolichol was much more sensitive then was the synthesis of lipid-linked oligosaccharides. The glucose-labeled oligosaccharide produced in the absence of amphomycin was of high molecular weight based on paper chromatography. But in the presence of partially inhibitory concentrations of antibiotic, the oligosaccharide migrated more rapidly on paper chromatograms. However, amphomycin had no effect on the synthesis of glucosyl-ceramide by the aorta extracts. In fact, the antibiotic may stimulate glucosyl-ceramide by making more of the substrate, UDP-glucose, available for synthesis of this lipid.  相似文献   

6.
Membrane preparations from developing soybean (var. Prize) cotyledon tissue, at the time of synthesis of storage glycoproteins, catalyze the sequential assembly of lipid-linked oligosaccharides from uridine-5'-diphospho-N-acetyl-d-[6-(3)H] glucosamine and guanosine-5'diphospho-d-[U-(14)C]mannose. The maximum size of lipid-linked oligosaccharide that accumulates contains the equivalent of 10 saccharide units on the basis of Bio-Gel P-2 gel filtration studies. These lipid-linked oligosaccharides show similar characteristics to polyisoprenyl diphosphate derivatives on diethylaminoethyl-cellulose chromatography and are potential intermediates in glycoprotein biosynthesis in this tissue. These glycolipids do not appear to turn over in pulse-chase experiments and no completed storage glycoproteins were detected among the products of these incubations.Tissue slices from cotyledons at the same stage of development synthesize lipid-linked oligosaccharides from [(3)H]mannose and [(3)H]glucosamine with sizes equivalent to 1, 7, 10, and approximately 15 saccharide units. In pulse-chase experiments, the lipid-linked saccharides with the equivalent of 1 and 10 units rapidly turnover, whereas those with 7 and 15 units do not. Examination of the higher oligosaccharide peaks (10 and 15) by Bio-Gel P-4 gel filtration shows them to comprise 2 distinct subsets of oligosaccharides containing different proportions of glucosamine and mannose units. Tissue slices synthesize products which resemble the completed 7S storage glycoproteins as judged by similarity of molecular weight and precipitation with specific antisera. Analysis of the oligosaccharides obtained by hydrazinolysis of glycoproteins shows the presence of a similar size "high-mannose" type N-linked oligosaccharides as in other glycoproteins from animal and plant cells.  相似文献   

7.
Pea membranes supplied with GDP-[14C]mannose, UDP-N-[14C]acetylglucosamine or UDP-[14C]glucose catalyze the transfer of 14C-labeled sugars or sugar phosphates to endogenous lipid acceptors as well as to exogenously added dolichyl phosphates. Fully unsaturated polyprenyl phosphates were not used as effective acceptors by this system. Mannosyl-P-dolichol was formed most rapidly in the presence of long-chained dolichyl-P while mannosyl-PP-, glucosyl-PP- and GlcNAc-PP-dolichol were preferentially formed from relatively short-chained dolichyl phosphate acceptors. Glucosyl-PP- and mannosyl-PP-dolichol accumulated in the preparation without further metabolism, but GlcNAc-PP-dolichol was lengthened by addition of a second GlcNAc plus several [14C]mannose units to form an oligosaccharide fraction susceptible to the action of endoglycosidase H. This lipid-linked oligosaccharide could then be glycosylated in the presence of UDP-[14C]glucose to form a longer oligosaccharide. It is concluded that levels of endogenous dolichyl phosphates in pea membranes are rate-limiting for several of the key glycosyltransferases required for oligosaccharide assembly.  相似文献   

8.
The structure of the carbohydrate moiety of the lipopeptidophosphoglycan from Trypanosoma cruzi was studied by 13C NMR spectroscopy and by methylation analysis of the original and of an acid-degraded sample. An oligosaccharide, consisting of 2-O-substituted and 6-O-substituted mannoses, which is linked to the ceramide, was separated by partial acid hydrolysis from an external chain that contained 3-O-substituted mannopyranosyl residues. beta-D-Galactofuranosyl terminal units are attached to position 3 of (1----2)-linked mannopyranose. Besides the previously reported monosaccharide components (mannose, galactose, glucose and glucosamine), ribose was identified in a partial acid hydrolysate of the lipopeptidophosphoglycan. The last three sugars are minor components and their organization into the overall structure of the lipopeptidophosphoglycan has not been determined.  相似文献   

9.
MOPC 315 is a BALB/c plasmacytoma which secretes a trinitrophenol-binding IgA lambda 2 paraprotein. We have investigated the incorporation of [3H]mannose into lipid-linked oligosaccharide precursors in wild-type MOPC 315/J and variant nonsecretory 315/P cells. In pulse labeling experiments, no differences could be detected in the ability of the two cell types to incorporate [3H]mannose into lipid-linked oligosaccharides containing 5 or less mannose residues. In contrast, quantitation of the incorporation of [3H]mannose into larger lipid-linked oligosaccharides and proteins revealed a 49 and 40% decrease, respectively, in the 315/P cells compared to wild-type cells. Further characterization of the lipid-linked structures documented a marked decrease in glucosylated oligosaccharides isolated from 315/P cells. When membranes from the two cell lines were analyzed for their ability to transfer [3H]glucose from UDP-[3H]glucose to [3H]glucosylphosphoryldolichol, an apparent deficiency was noted in the 315/P preparations. However, if assay conditions were adjusted to include AMP in the reaction mixtures, no differences in the in vitro synthesis of [3H]glucosylphosphoryldolichol or [3H]glucose-labeled oligosaccharide-lipid could be detected. In these reactions AMP was found to prevent hydrolysis of UDP-[3H]glucose by inhibiting nucleotide pyrophosphatase (EC 3.6.1.9), the specific activity of which was determined to be more than 100 times greater in variant 315/P compared to wild-type MOPC 315/J cells. This large difference in specific activity was not accompanied by similar differences in the activity of several other enzymes analyzed. A decrease in whole cell UDP-glucose pool size was not detected in 315/P cells. Therefore, if nucleotide pyrophosphatase is important for the control of substrates for glycosylation, it must regulate nucleotide sugar levels at a site other than the cytoplasm of cells, perhaps at the location of synthesis of the larger lipid-linked oligosaccharides.  相似文献   

10.
The structure of the oligosaccharide chain of the lipid-linked oligosaccharide that serves as a donor of oligosaccharide chain to proteins of hen oviduct membranes has been investigated. A [Man-14C]glycopeptide fraction was prepared from membrane glycoproteins labeled with GDP-[14C]mannose. Reductive alkaline cleavage of this glycopeptide yielded a reduced oligosaccharide that, by four criteria, was identical with reduced [Man-14C]oligosaccharide prepared from [Man-14C]oligosaccharide-lipid. The structure of the oligosaccharide chain of the [Man-14C]glycopeptide was investigated by cleavage with a specific endo-beta-N-acetylglucosaminidase, followed by treatment of the released oligosaccharide with purified al alpha-and beta-mannosidases. By this procedure it was possible to establish the structure of the cleavage product as (alpha-Man)n-beta-Man-(1 leads to 4)-GlcNAc. Similar studies were performed on the [GlcNAc-14C]oligosaccharide prepared by hydrolysis of [GlcNAc-14C]oligosaccharide-lipid. The results indicate that the structure of the intact oligosaccharide is (alpha-Man)n-beta-Man-(1 leads 4)-beta-GlcNAc-(1 leads to 4)-GlcNAc. These experiments, coupled with earlier enzymatic studies on synthesis of the glycoproteins from the lipid-linked oligosaccharide, provide strong evidence that the structure of the oligosaccharide intermediate and the oligosaccharide chain of the glycoprotein product contain the same core structure found in many secretory glycoproteins.  相似文献   

11.
The effects of the glycosylation inhibitor 2-deoxy-2-fluoro-D-glucose on the formation of the lipid-linked oligosaccharides and monosaccharides that are involved in protein glycosylation were investigated. In chick embryo cells treated with fluoroglucose the formation of lipid-linked oligosaccharides cannot go to completion and oligosaccharides with decreased amounts of glucose and mannose can be detected. These oligosaccharides are probably biosynthetic intermediates and serve as acceptors of sugar residues while reversing fluoroglucose-inhibition by the addition of mannose and glucose to the culture medium. In contrast to deoxyglucose, fluoroglucose was not incorporated into lipid-linked oligosaccharides. Fluoroglucose inhibits the formation in vivo of dolichyl phosphate glucose and dolichyl phosphate mannose, but not the transfer of those sugar residues from the lipid monophosphate derivative to the lipid-linked oligosaccharides. The pool size of UDP-glucose, but not of GDP-mannose and UDP-N-acetylglucosamine, was decreased. Also, the formation of lipid-linked N-acetylglucosamine was not affected by fluoroglucose. Fluoroglucose was applied to deplete cellular membranes of endogenous lipid-linked mannose and glucose, and can possibly be used to discern different pathways of glycosylation.  相似文献   

12.
We used homologous and heterologous expression of the glycosyltransferase genes of the Lactococcus lactis NIZO B40 eps gene cluster to determine the activity and substrate specificities of the encoded enzymes and established the order of assembly of the trisaccharide backbone of the exopolysaccharide repeating unit. EpsD links glucose-1-phosphate from UDP-glucose to a lipid carrier, EpsE and EpsF link glucose from UDP-glucose to lipid-linked glucose, and EpsG links galactose from UDP-galactose to lipid-linked cellobiose. Furthermore, EpsJ appeared to be involved in EPS biosynthesis as a galactosyl phosphotransferase or an enzyme which releases the backbone oligosaccharide from the lipid carrier.  相似文献   

13.
The process of N-linked glycosylation of secretory proteins is characterized by enzymatic reactions occurring on both sides of the endoplasmic reticulum (ER) membrane. On either side multiple glycosyltransferases participate in the stepwise addition of monosaccharides to core oligosaccharide unit that is attached to the lipid carrier dolichyl pyrophosphate. Cytoplasm-oriented glycosyltransferases use nucleotide-activated sugars as substrates, whereas lumen-oriented transferases that act later in the pathway make use of dolichyl phosphate-linked monosaccharides. The completely assembled core oligosaccharide is transferred to proteins on the lumenal side of the ER. The topological organization of this biosynthetic pathway requires the translocation of lipid-linked mono- and oligo-saccharides across the ER membrane. The transfer of the substrates and intermediates depend on specific translocators, i.e. so called flippases.  相似文献   

14.
Biosynthesis of pentosyl lipids by pea membranes.   总被引:3,自引:1,他引:2  
Pea membranes were incubated with UDP-[14C]xylose or UDP-[14C]arabinose and sequentially extracted with chloroform/methanol/water (10:10:3, by vol.) and sodium dodecyl sulphate (2%, w/v). An active epimerase in the membranes rapidly interconverted the two pentosyl nucleotides. Chromatographic analysis of the lipid extract revealed that both substrates gave rise to xylose- and arabinose-containing neutral lipids, xylolipid with properties similar to a polyisoprenol monophosphoryl derivative, and highly charged lipid-linked arabinosyl oligosaccharide. When UDP-[14C]pentose or the extracted lipid-linked [14C]arabinosyl oligosaccharide were used as substrates, their 14C was also incorporating into sodium dodecyl sulphate-soluble and -insoluble fractions as major end products. Polyacrylamide-gel electrophoresis of sodium dodecyl sulphate-soluble products indicated the formation of mobile components with Mr values between 40 000 and 200 000 (Sepharose CL-6B). The lipid-linked [14C]arabinosyl oligosaccharide possessed properties comparable with those of unsaturated polyisoprenyl pyrophosphoryl derivatives. It was hydrolysed by dilute acid to a charged product (apparent Mr 2300) that could be fractionated in alkali. It was degraded to shorter labelled oligosaccharides by slightly more concentrated acid and eventually to [14C]arabinose as the only labelled component. Susceptibility to acid hydrolysis, and methylation analysis, indicated that the oligosaccharide contained approximately seven sequential alpha-1,5-linked arabinofuranosyl units at the non-reducing end. Several acidic residues appear to be interposed between the terminal arabinosyl units and the charged lipid.  相似文献   

15.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

16.
A lipopolysaccharide was isolated from Neisseria meningitidis group B by phenol/water extraction and purified by differential ultracentrifugation. This preparation exhibited endotoxic properties as shown by the limulus-lysate assay. Mild acid hydrolysis of the lipopolysaccharides yielded a lipid A fraction and a polysaccharide fraction. The lipid A fraction contained fatty acids, phosphorus and glucosamine. Analysis of the polysaccharide fraction revealed the presence of glucose, galactose, glucosamine, 2-keto-3-deoxyoctonic acid and phosphorus. There was no heptose.  相似文献   

17.
The particulate enzymes obtained from four strains of Bacillus megaterium AHU 1240, AHU 1373, AHU 1375, and T catalyzed the synthesis of a polysaccharide and glycolipids from UDP-N-acetylmannosaminuronic acid, UDP-N-acetylglucosamine, and UDP-glucose. Chemical studies involving Smith degradation, acid hydrolysis, and N-acetylation revealed that the polysaccharide product has a backbone made up of trisaccharide repeating units comprising glucose, N-acetylmannosaminuronic acid, and N-acetylglucosamine and that the main oligosaccharide moieties of the glycolipids were identical with N-acetylmannosaminuronosyl-N-acetylglucosamine and glucosyl-N-acetylmannosaminuronosyl-N-acetylglucosamine. Incubation of the disaccharide-linked lipid with each particulate enzyme in the presence of UDP-glucose produced the trisaccharide-linked lipid and a polysaccharide. It is therefore suggested that in this polysaccharide-synthesizing system the repeating unit is formed on a carrier lipid from appropriate nucleotide derivatives first and the polymerization of the units then occurs to synthesize the backbone while the growing chain remains in pyrophosphate linkage to the carrier lipid presumed to be undecaprenol.  相似文献   

18.
The synthesis of the complex-type oligosaccharide unit of the vesicular stomatitis virus G protein is initiated by the en bloc transfer of a high molecular weight oligosaccharide from a lipid carrier to the nascent polypeptide. Following transfer the oligosaccharide is "processed" by removal of glucose and mannose residues and the sugars that constitute the outer branches of the complex-type oligosaccharide are added. The structure of the oligosaccharide moiety of the lipid-linked precursor has been elucidated in order to further define the steps involved in processing. Since it was not feasible to obtain adequate amounts of material for standard structural studies, most of the structural studies were performed on radiolabeled material, with radioactivity incorporated differentially into glucose, mannose, and N-acetylglucosamine. Based on endo-beta-N-acetylglucosaminidase CII digestion, alpha-mannosidase digestion, acetolysis, Smith periodate degradation, methylation analysis, and periodate oxidation, we propose the following structure for the oligosaccharide moiety of the lipid-linked oligosaccharide.  相似文献   

19.
The lipid-linked octa-, nona-, and decasaccharides, isolated from incubations of a membrane preparation from the lactating bovine mammary tissue with GDP-[14C]mannose and UDP-N-acetylglucosamine were subjected to mild acid hydrolysis and purified extensively by repeated gel filtration and paper chromatography. Structural characterization of the oligosaccharides containing six to eight mannose residues linked to an N,N'-diacetylchitobiose unit utilizing digestions with alpha-mannosidase, beta-mannosidase, endo-beta-N-acetylglucosaminidase, D, H, and L, acetolysis, and methylation analysis revealed the presence of several isomers within each size species. Supplementation of the incubations with 0.1 mM dolichol phosphate reduces the number of isomers within these oligosaccharides; the predominant isomers of saccharides from these incubations appear to be similar to the saccharides isolated from in vivo preparations of Chinese hamster ovary cells.  相似文献   

20.
Calf pancreas microsomes incorporated radioactive D-mannose from GDP-D-[14C]mannose into lipid-bound oligosaccharides extracted with chloroform/methanol/water (10/10/2.5, v/v). Several products, which probably differed in the size of the oligosaccharide moiety, were labeled. These could be partially resolved by thin layer chromatography and DEAE-cellulose chromatography. The labeled lipid-bound oligosaccharides were retained on DEAE-cellulose more strongly than synthetic dolichyl alpha-D-[14C]mannopyranosyl phosphate. They were stable to mild alkali, but labile to acid and hot alkali. Acid treatment yielded a neutral 14C-labeled oligosaccharide fraction which was estimated by gel filtration to have a minimum of 8 monosaccharide residues. Hot alkali treatment yielded a mixture of neutral and acidic 14C-labeled oligosaccharides which could be transformed into neutral products by alkaline phosphatase. The D-[14C]mannose residues were alpha-linked at the nonreducing terminus of the oligosaccharides since they could be removed completely with alpha-mannosidase. Most of the D-[14C]mannose-labeled oligosaccharides were retained on concanavalin A Sepharose and eluted with methyl alpha-D-mannopyranoside. Pancreatic dolichyl beta-D-[14C]mannopyranosyl phosphate incubated with calf pancreas microsomes in the presence of sodium taurocholate was efficiently utilized as donor of alpha-D-mannosyl residues in lipid-bound oligosaccharides. The products formed from dolichyl beta-D-[14C]mannopyranosyl phosphate were identical with those formed from GDP-D-[14C]mannose, and evidence was obtained to show that the dolichyl beta-D-[14C]mannopyranosyl phosphate was serving as donor without prior conversion to GDP-D-[14C]mannose. Transfer of mannose from dolichyl beta-D-[14C]mannopyranosyl phosphate to lipid-bound oligosaccharides took place at a pH optimum of 7.3, whereas transfer to the precipitate containing glycoproteins was greatest at pH 6.0 in Tris/maleate buffer. The addition of divalent cation was not required, but low concentrations of EDTA were extremely inhibitory. The carbohydrate composition of the lipid-bound oligosaccharides of microsomal membranes was investigated by gas-liquid chromatography and by reduction with sodium borotritide. A heterogeneous mixture of oligosaccharides containing N-acetyl-D-glucosamine, D-mannose, and D-glucose varying in proportions from approximately 1/2.5/0.5 to 1/5/1.5 was obtained with glucosamine at the reducing end. Acid treatment of the lipid-bound oligosaccharide fraction yielded dolichyl pyrophosphate, suggesting that at least some of the oligosaccharides were linked to dolichol through a pyrophosphate group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号