首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic Salmonella strains and Escherichia coli O157:H7 was developed and evaluated for use in detecting very low levels of these pathogens in meat and feces. Two sets of primers were used to amplify a junctional segment of virulence genes sipB and sipC of Salmonella and an intragenic segment of gene eae of E. coli O157:H7. Fluorogenic reporter probes were included in the PCR assay for automated and specific detection of amplified products. The assay could detect <10 CFU of Salmonella enterica serovar Typhimurium or E. coli O157:H7 per g of meat or feces artificially inoculated with these pathogens and cultured for 6 to 18 h in a single enrichment broth. Detection of amplification products could be completed in 相似文献   

2.
AIMS: To apply the real-time Polymerase chain reaction (PCR) method to detect and quantify Escherichia coli O157:H7 in soil, manure, faeces and dairy waste washwater. METHODS AND RESULTS: Soil samples were spiked with E. coli O157:H7 and subjected to a single enrichment step prior to multiplex PCR. Other environmental samples suspected of harbouring E.coli O157:H7 were also analysed. The sensitivity of the primers was confirmed with DNA from E.coli O157:H7 strain 3081 spiked into soil by multiplex PCR assay. A linear relationship was measured between the fluorescence threshold cycle (C T ) value and colony counts (CFU ml(-1)) in spiked soil and other environmental samples. The detection limit for E.coli O157:H7 in the real-time PCR assay was 3.5 x 10(3) CFU ml(-1) in pure culture and 2.6 x 10(4) CFU g(-1) in the environmental samples. Use of a 16-h enrichment step for spiked samples enabled detection of <10 CFU g(-1) soil. E. coli colony counts as determined by the real-time PCR assay, were in the range of 2.0 x 10(2) to 6.0 x 10(5) CFU PCR (-1) in manure, faeces and waste washwater. CONCLUSIONS: The real-time PCR-based assay enabled sensitive and rapid quantification of E. coli O157:H7 in soil and other environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to quantitatively determine cell counts of E.coli O157:H7 in large numbers of environmental samples, represents considerable advancement in the area of pathogen quantification for risk assessment and transport studies.  相似文献   

3.
A time-resolved fluorescence technique was developed to detect Escherichia coli O157:H7 in ground beef burger. After a 4.5 h enrichment period, streptavidin coated magnetic beads conjugated with biotin-labeled anti E. coli O157:H7 were used to capture the bacteria. The bacteria were, at the same time, also labeled by a nonfluorescent, europium (Eu)-tagged anti-E. coli O157:H7 antibody. The sandwiched bacterial complexes were then concentrated using a magnetic particle concentrator and washed to remove other solution components. Upon addition of an enhancement buffer, the Eu-labels were then released from the antibodies and chelated to nitrilo-triacetic acid (NTA) and trioctylphosphine oxide (TOPO) to form highly fluorescent Eu-(2-NTA)3(TOPO)2–3 micellar complexes. Delayed fluorescence associated with these complexes was measured and its intensity was used to estimate the original bacterial concentration spiked in hamburger. This approach was applied to detect E. coli O157:H7 spiked in hamburgers. The results indicated this method is able to detect 1 CFU/g of the bacteria after a brief enrichment for four and half hours at 37C. Specificity studies indicated that the approach exhibited no or limited cross reactivity to Salmonella typhimurium, E. coli K-12 or Shigella dysenteriae spiked in hamburgers. Thus, the developed approach may be used as a rapid screening procedure for E. coli O157 bacteria in foods.  相似文献   

4.
An immunoassay based on immunomagnetic separation and time-resolved fluorometry was developed for the detection of E. coli O157:H7 in apple cider. The time-resolved fluorescent immunoassay (TRFIA) uses a polyclonal antibody bound to immunomagnetic beads as the capture antibody and the same antibody labeled with europium as the detection antibody. Cell suspensions of 10(1) to 10(8) E. coli O157:H7 and K-12 organisms per ml were used to test the sensitivity and specificity of the assay. The sensitivity of the assay was 10(3) E. coli O157:H7 cells with no cross-reaction with K-12. Pure cultures of E. coli O157:H7 (10(1) to 10(5) CFU/ml) in apple cider could be detected within 6 h, including 4 h for incubation in modified EC broth with novobiocin and 2 h for the immunoassay. When apple cider was spiked with 1 to 10(3) CFU/ml of E. coli O157:H7 and 10(6) CFU/ml of K-12, our data show that the high level of K-12 in apple cider did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum were 10(2) and 10(1) CFU/ml after 4- and 6-h enrichment. The TRFIA provides a rapid and sensitive means of detecting E. coli O157:H7 in apple cider.  相似文献   

5.
The goal of this study was to develop a sensitive, specific, and accurate method for the selective detection of viable Escherichia coli O157:H7 cells in foods. A unique open reading frame (ORF), Z3276, was identified as a specific genetic marker for the detection of E. coli O157:H7. We developed a real-time PCR assay with primers and probe targeting ORF Z3276 and confirmed that this assay was sensitive and specific for E. coli O157:H7 strains (n = 298). Using this assay, we can detect amounts of genomic DNA of E. coli O157:H7 as low as a few CFU equivalents. Moreover, we have developed a new propidium monoazide (PMA)-real-time PCR protocol that allows for the clear differentiation of viable from dead cells. In addition, the protocol was adapted to a 96-well plate format for easy and consistent handling of a large number of samples. Amplification of DNA from PMA-treated dead cells was almost completely inhibited, in contrast to the virtually unaffected amplification of DNA from PMA-treated viable cells. With beef spiked simultaneously with 8 × 10(7) dead cells/g and 80 CFU viable cells/g, we were able to selectively detect viable E. coli O157:H7 cells with an 8-h enrichment. In conclusion, this PMA-real-time PCR assay offers a sensitive and specific means to selectively detect viable E. coli O157:H7 cells in spiked beef. It also has the potential for high-throughput selective detection of viable E. coli O157:H7 cells in other food matrices and, thus, will have an impact on the accurate microbiological and epidemiological monitoring of food safety and environmental sources.  相似文献   

6.
A modified procedure for magnetic capture of antibody-conjugated bacteria for light addressable potentiometric sensor (LAPS) detection using the Threshold System was developed. Streptavidin coated magnetic beads, partially labeled with biotinylated anti Escherichia coli O157 antibodies, were used to capture Escherichia coli O157:H7. Captured bacteria were further labeled with fluorescein-conjugated anti -E. coli O157:H7 antibodies and urease-labeled. anti-fluorescein antibody. Magnetically concentrated bacteria-containing complexes were then immobilized through streptavidin-biotin interactions on 0.45 μ biotinylated nitro-cellulose membranes assembled as sample sticks for the Threshold instrument. The rate of pH change associated with the production of NH3 by the urease in urea-containing solution was measured by a LAPS incorporated in the Threshold instrument. This approach allowed us to detect 103 to 104 CPU of cultured E. coli O157:H7 in PBS solutions. Furthermore, detectable LAPS signals of the sample sticks remained relatively constant for at least 24 h at 4C. The developed approach was applied to detect the E. coli in beef hamburger spiked with the bacteria. After a 5 to 6-h enrichment at 37C, as low as 1 CFU/g of E. coli O157:H7 in beef hamburger could be detected.  相似文献   

7.
A commercially available real-time, rapid PCR test was evaluated for its ability to detect Escherichia coli O157. Both the sensitivity and specificity of the assay were 99% for isolates in pure culture. The assay detected 1 CFU of E. coli O157:H7 g(-1) in artificially inoculated bovine feces following enrichment.  相似文献   

8.
Escherichia coli O157:H7, a major foodborne pathogen, has been associated with numerous cases of foodborne illnesses. Rapid methods have been developed for the screening of this pathogen in foods in order to circumvent timely plate culture techniques. Unfortunately, many rapid methods are presumptive and do not claim to confirm the presence of E. coli O157:H7. The previously developed method, enzyme-linked immunomagnetic chemiluminescence (ELIMCL), has been improved upon to allow for fewer incidences of false positives when used to detect E. coli O157:H7 in the presence of mixed cultures. The key feature of this assay is that it combines the highly selective synergism of both anti-O157 and anti-H7 antibodies in the sandwich immunoassay format. This work presents application of a newly semi-automated version of ELIMCL to the detection of E. coli O157:H7 in pristine buffered saline yielding detection limits of approximately 1 x 10(5) to 1 x 10(6) of live cells/mL. ELIMCL was further demonstrated to detect E. coli O157:H7 inoculated into artificially contaminated ground beef at ca. 400 CFU/g after a 5 h enrichment and about 1.5 h assay time for a total detection time of about 6.5 h. Finally, ELIMCL was compared with USFDA's Bacteriological Analytical Manual method for E. coli O157:H7 in a double-blind study. Using McNemar's treatment, the two methods were determined to be statistically similar for the detection of E. coli O157:H7 in ground beef inoculated with mixed cultures of select bacteria.  相似文献   

9.
The extraction of DNA from manure and the subsequent polymerase chain reaction (PCR) amplification of virulence genes to detect pathogens require an effective method of purification. Four different methods were assessed for their effectiveness in extracting and purifying Escherichia coli O157:H7 DNA from cattle manure: phenol/chloroform purification, phenol/chloroform/Sepharose B4 spin columns, phenol/chloroform/polyvinylpolypyrrolidone (PVPP) spun columns, and Mo Bio UltraClean kit. A PCR assay targeting the shiga-like toxin I gene (sltI) was carried out to determine the effectiveness of the four methods in removing PCR inhibitors from the manure samples. All methods were used to extract a manure slurry and the cleanliness of the samples was tested by the PCR with varying concentrations of spiked E. coli O157:H7 target DNA. The PVPP spun columns and the UltraClean kit had the best detection limit, detecting 20 pg of E. coli DNA (about 2x10(3) cells) per 100 mg of manure. The UltraClean kit and the PVPP spun columns also had the best and similar detection limits of 3x10(4) CFU/100 mg manure when E. coli O157:H7 cells were spiked into the manure sample and purified by all four methods. The enrichment of cells after inoculation into manure was performed using tryptic soy broth at 37 degrees C for 5 h. Both the PVPP spun columns and the UltraClean kit methods were used to purify the enriched samples and were able to detect initial inocula of 6 CFU/100 mg manure, indicating that the two methods were highly efficient in purifying DNA from manure samples.  相似文献   

10.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

11.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

12.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

13.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

14.
Escherichia coli O157: H7 has emerged as a new pathogen and is found worldwide. We studied the effect of several storage temperatures on the survival of this bacterium in common foods from a neotropical environment (Costa Rica) because at least seven clinical cases have been reported from the country, and no epidemiological link or probable food association has been described. High (10(6)-10(8) CFU/ml) and low (10(4)-10(6) CFU/ml) populations of E. coli were inoculated (three replications) in ground meat, chopped cabbage, chicken giblets and pasteurized milk and incubated at 0, 6 and 12 degrees C for 24, 48 and 72 h. Vegetables and milk were also stored at 22 degrees C for the same periods. The E. coli O157: H7 enumeration was done according to the methodology described in the Bacteriological Analytical Manual. Populations of E. coli O157: H7 showed either an increasing or decreasing trend, according to temperature, time or food base. Our data indicate that E. coli O157: H7 is capable of surviving and growing in meat, cabbage, milk and chicken giblets; food items commonly consumed by Costa Ricans.  相似文献   

15.
A sensitive bacteria enrichment and detection system for viable Escherichia coli O157:H7 was developed using a piezoelectric biosensor-quartz crystal microbalance (QCM) with antibody-functionalized gold nanoparticles (AuNPs) used as detection verifiers and amplifiers. In the circulating-flow QCM system, capture antibodies for E. coli O157:H7 were first immobilized onto the QCM chip. The sample containing E. coli O157:H7 was circulated through the system in the presence of 10ml of brain heart infusion (BHI) broth for 18h. The cells of E. coli O157:H7 specifically captured and enriched on the chip surface of the QCM were identified by QCM frequency changes. Listeria monocytogenes and Salmonella Typhimurium were used as negative controls. After bacterial enrichment, detection antibody-functionalized AuNPs were added to enhance the changes in detection signal. The use of BHI enrichment further enhanced the sensitivity of the developed system, achieving a detection limit of 0-1log CFU/ml or g. The real-time monitoring method for viable E. coli O157:H7 developed in this study can be used to enrich and detect viable cells simultaneously within 24h. The unique advantages of the system developed offer great potential in the microbial analysis of food samples in routine settings.  相似文献   

16.
Contamination of fresh produce with Escherichia coli O157:H7 and other pathogens commonly causes food-borne illness and disease outbreaks. Thus, screening for pathogens is warranted, but improved testing procedures are needed to allow reproducible same-day detection of low initial contamination levels on perishable foods, and methods for detecting numerous pathogens in a single test are desired. Experimental procedures were developed to enable rapid screening of spinach for E. coli O157:H7 by using multiplex-capable immunological assays that are analyzed using biosensors. Detection was achieved using an automated electrochemiluminescent (ECL) assay system and a fluorescence-based cytometric bead array. Using the ECL system, less than 0.1 CFU of E. coli O157:H7 per gram of spinach was detected after 5 h of enrichment, corresponding to 6.5 h of total assay time. Using the cytometric bead array, less than 0.1 CFU/g was detected after 7 h of enrichment, with a total time to detection of less than 10 h. These results illustrate that both biosensor assays are useful for rapid detection of E. coli O157:H7 on produce in time frames that are comparable to or better than those of other testing formats. Both methods may be useful for multiplexed pathogen detection in the food industry and other testing situations.  相似文献   

17.
Molecular beacons (MBs) are oligonucleotide probes that fluoresce upon hybridization. In this paper, we described the development of a real-time PCR assay to detect the presence of Escherichia coli O157:H7 using these fluorogenic reporter molecules. MBs were designed to recognize a 26-bp region of the rfbE gene, coding for an enzyme necessary for O-antigen biosynthesis. The specificity of the MB-based PCR assay was evaluated using various enterohemorrhagic (EHEC) and Shiga-like toxin-producing (STEC) E. coli strains as well as bacteria species that cross-react with the O157 antisera. All E. coli serotype O157 tested was positively identified while all other species, including the closely related O55 were not detected by the assay. Positive detection of E. coli O157:H7 was demonstrated when >10(2) CFU/ml was present in the samples. The capability of the assay to detect E. coli O157:H7 in raw milk and apple juice was demonstrated. As few as 1 CFU/ml was detected after 6 h of enrichment. These assays could be carried out entirely in sealed PCR tubes, enabling rapid and semiautomated detection of E. coli O157:H7 in food and environmental samples.  相似文献   

18.
AIM: To develop an improved, rapid and sensitive sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. METHODS AND RESULTS: Fresh ground beef samples were experimentally inoculated with varying concentrations of E. coli O157:H7. PCR inhibitors were removed and bacterial cells were concentrated by filtration and centrifugation, and lysed using enzymatic digestion and successive freeze/thaw cycles. DNA was purified and concentrated via phenol/chloroform extraction and the Shiga toxin 1 gene (stx1) was amplified using PCR to evaluate the sample preparation method. Without prior enrichment of cells in broth media, the detection limit was 103 CFU g-1 beef. When a 6 h enrichment step was incorporated, the detection limit was 1 CFU g-1 beef. The total time required from beginning to end of the procedure was 12 h. CONCLUSIONS: The sample preparation method developed here enabled substantially improved sensitivity in the PCR-based detection of E. coli O157:H7 in ground beef, as compared to previous reports. SIGNIFICANCE AND IMPACT OF THE STUDY: Superb sensitivity, coupled with quick turn-around time, relative ease of use and cost-effectiveness, makes this a useful method for detecting E. coli O157:H7 in ground beef.  相似文献   

19.
A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic Salmonella strains and Escherichia coli O157:H7 was developed and evaluated for use in detecting very low levels of these pathogens in meat and feces. Two sets of primers were used to amplify a junctional segment of virulence genes sipB and sipC of Salmonella and an intragenic segment of gene eae of E. coli O157:H7. Fluorogenic reporter probes were included in the PCR assay for automated and specific detection of amplified products. The assay could detect <10 CFU of Salmonella enterica serovar Typhimurium or E. coli O157:H7 per g of meat or feces artificially inoculated with these pathogens and cultured for 6 to 18 h in a single enrichment broth. Detection of amplification products could be completed in ≤4 h after enrichment.  相似文献   

20.
Many rapid tests have been developed for the detection of Escherichia coli O157:H7 from complex matrices such as food and water. However, many of these methods rely on traditional culture steps for confirmation, which can take an extra 24-48 h. The fiber optic biosensor has been used to rapidly detect pathogens from complex matrices. In this paper, we demonstrate a method using a rapid biosensor assay, recovery through a short enrichment, and PCR to detect and confirm the presence of at least 10(3) CFU/ml of E. coli O157:H7 in a sample in less than 10 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号