首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syndrome of inappropriate antidiuretic hormone (SIADH) is characterized by euvolemic hyponatremia. Patients with SIADH continue to drink normal amounts of fluid, despite plasma osmolalities well below the physiological osmotic threshold for onset of thirst. The regulation of thirst has not been previously studied in SIADH. We studied the characteristics of osmotically stimulated thirst and arginine vasopressin (AVP) secretion in eight subjects with SIADH and eight healthy controls and the nonosmotic suppression of thirst and AVP during drinking in the same subjects. Subjects underwent a 2-h infusion of hypertonic (855 mmol/l) NaCl solution, followed by 30 min of free access to water. Thirst rose significantly in both SIADH (1.5 +/- 0.6 to 8.0 +/- 1.2 cm, P < 0.0001) and controls (1.8 +/- 0.8 to 8.4 +/- 1.5 cm, P < 0.0001), but the osmotic threshold for thirst was lower in SIADH (264 +/- 5.5 vs. 285.9 +/- 2.8 mosmol/kgH(2)O, P < 0.0001). SIADH subjects drank volumes of water similar to controls after cessation of the infusion (948.8 +/- 207.6 vs. 1,091 +/- 184 ml, P = 0.23). The act of drinking suppressed thirst in both SIADH and controls but did not suppress plasma AVP concentrations in SIADH compared with controls (P = 0.007). We conclude that there is downward resetting of the osmotic threshold for thirst in SIADH but that thirst responds to osmotic stimulation and is suppressed by drinking around the lowered set point. In addition, we demonstrated that drinking does not completely suppress plasma AVP in SIADH.  相似文献   

2.
Neurons of the organum vasculosum of the lamina terminalis (OVLT) are necessary for thirst and vasopressin secretion during hypersmolality in rodents. Recent evidence suggests the osmosensitivity of these neurons is mediated by a gene product encoding the transient receptor potential vanilloid-1 (TRPV1) channel. The purpose of the present study was to determine whether mice lacking the TRPV1 channel had blunted thirst responses and central Fos activation to acute and chronic hyperosmotic stimuli. Surprisingly, TRPV1-/- vs. wild-type mice ingested similar amounts of water after injection (0.5 ml sc) of 0.5 M NaCl and 1.0 M NaCl. Chronic increases in plasma osmolality produced by overnight water deprivation or sole access to a 2% NaCl solution for 48 h produced similar increases in water intake between wild-type and TRPV1-/- mice. There were no differences in cumulative water intakes in response to hypovolemia or isoproterenol. In addition, the number of Fos-positive cells along the lamina terminalis, including the OVLT, as well as the supraoptic nucleus and hypothalamic paraventricular nucleus, was similar between wild-type and TRPV1-/- mice after both acute and chronic osmotic stimulation. These findings indicate that TRPV1 channels are not necessary for osmotically driven thirst or central Fos activation, and thereby suggest that TRPV1 channels are not the primary ion channels that permit the brain to detect changes in plasma sodium concentration or osmolality.  相似文献   

3.
To determine whether centrally released vasopressin influences thirst, observations of osmotic thirst threshold, osmotic load excretion and postloading restitution of plasma osmolality were made in dogs in control experiments and during infusion of AVP antagonists into the third ventricle. Significant elevation of osmotic thirst threshold was elicited by infusion of d(CH2)5AVP at a rate of 0.2–2.0 μg·min−1 and of d(Et2)AVP at a rate of 0.3 μg·min−1 (V1 antagonists, weak V2 agonists) as well as by administration of d(CH2)5[D-Ile2,Abu4]AVP at a rate of 0.4 μg·min−1 (potent V2 antagonist, weak V1 antagonist). Administration of d(CH2)5AVP at a rate of 2.0 μg·min−1 was associated with a significant suppression of the postloading water intake and osmotic load excretion and with a delay in restitution of plasma osmolality. These findings indicate that centrally released vasopressin may participate in the control of thirst.  相似文献   

4.
Body temperature, water intake, urine output, sodium and potassium excretion, osmolal and free water clearance, plasma osmolality, sodium and potassium concentrations and osmotic thirst were examined in conscious dogs during pyrogen fever and compared to those found under control conditions. Arterial blood pressure and central venous pressure were also measured in some experiments. Administration of pyrogen produced transient but significant decreases in urine output and striking increases in the spontaneous water intake in some of the experiments in the phase of increasing fever. Arterial blood pressure decreased, whetreas central venous pressure increased at this stage of fever. No significant changes in renal excretion of solutes and free water as well as sodium and potassium were found. Plasma osmolality and sodium concentration increased and potassium concentration decreased unsignificantly both in control and pyrogen experiments. The main finding was that the thirst threshold to osmotic stimuli increased markedly during the phase of stabilized fever may be caused by significant increase in internal body temperature.  相似文献   

5.
Summary The development of the preoptic nucleus of Xenopus laevis tadpoles during metamorphosis was studied and the effect of osmotic stimulation on this process investigated. The development of this region was not affected by treatment for one or more days in hypertonic media. It was found that at the end of metamorphosis the neurosecretory cells in the preoptic nucleus are localized in three regions: the rostro-dorsal, the caudo-dorsal and the ventral region. After osmotic stimulation only the neurosecretory cells of the caudo-dorsal region appeared to have reacted, as indicated by their loss of neurosecretory (PIC positive) material. It is concluded that the cells of this region may be involved in the synthesis of the posterior lobe hormones.The author thanks Prof. Dr. J. C. van de Kamer and Dr. F. C. G. van de Veerdonk for their interest and many helpful discussions, Dr. L. Boomgaart and Dr. A. P. van Overbeeke for correcting the English text and Miss C. M. G. van Bemmel for technical assistance.  相似文献   

6.
Magnocellular neurons of the hypothalamo-neurohypophysial system play a fundamental role in the maintenance of body homeostasis by secreting vasopressin and oxytocin in response to systemic osmotic perturbations. During chronic hyperosmolality, vasopressin and oxytocin mRNA levels increase twofold, whereas, during chronic hyposmolality, these mRNA levels decrease to 10-20% of that of normoosmolar control animals. To determine what other genes respond to these osmotic perturbations, we have analyzed gene expression during chronic hyper- versus hyponatremia. Thirty-seven cDNA clones were isolated by differentially screening cDNA libraries that were generated from supraoptic nucleus tissue punches from hyper- or hyponatremic rats. Further analysis of 12 of these cDNAs by in situ hybridization histochemistry confirmed that they are osmotically regulated. These cDNAs represent a variety of functional classes and include cytochrome oxidase, tubulin, Na(+)-K(+)-ATPase, spectrin, PEP-19, calmodulin, GTPase, DnaJ-like, clathrin-associated, synaptic glycoprotein, regulator of GTPase stimulation, and gene for oligodendrocyte lineage-myelin basic proteins. This analysis therefore suggests that adaptation to chronic osmotic stress results in global changes in gene expression in the magnocellular neurons of the supraoptic nucleus.  相似文献   

7.
Quantitative receptor autoradiography using Bolton-Hunter iodinated substance P (SP) was used to localize specific sites in the rat hypothalamus. The amount of SP and neurokinin A (NkA) in extracts from discrete areas of the hypothalamus was measured using specific radioimmunoassays. A high density of SP binding sites was observed in the perimeter of the magnocellular paraventricular and supraoptic nuclei, while the magnocellular nuclei themselves possessed a low receptor density. In control animals, the number of SP binding sites was also low in the arcuate nucleus and the median eminence. Substance P and NkA peptide concentrations were highest in the paraventricular nucleus (PVN), decreasing in the following order: arcuate nucleus (Arc) greater than median eminence (ME) greater than supraoptic nucleus (SON) greater than subfornical organ (SFO). In animals given 340 mmol/l NaCl instead of tap water to drink for 12 days, significant increases in the number of SP binding sites occurred in the medial parvocellular subdivision of the PVN, periamygdaloid cortex, medial preoptic nucleus, Arc, and ME, but other hypothalamic areas were unaffected. In saline-treated animals, significant increases in SP and NkA peptide concentrations were observed in the ME, while in the SFO only the concentration of NkA increased significantly. In the SON, substance P and neurokinin A levels were doubled, whereas in the PVN and Arc no changes in peptide levels were observed. Chronic osmotic stimulation is associated with lowered circulating levels of adrenocorticotropin releasing hormone (ACTH), and the present data further substantiate the hypothesis that hypothalamic tachykinin-containing neuronal terminals are centrally involved in the inhibition of anterior pituitary ACTH release observed during chronic osmotic stimulation.  相似文献   

8.
The pathways involved in the emotional aspects of thirst, the arousal and affect associated with the generation of thirst and the motivation to obtain satiation, have been studied but remain poorly understood. Rats were therefore injected with the neurotropic virus pseudorabies in either the insular or cingulate cortex. After 2 days of infection, pseudorabies-positive neurons were identified within the thalamus and lamina terminalis. In a separate group of rats, the retrograde tracer cholera toxin subunit b (CTb) was used in combination with either isotonic (0.15 M NaCl) or hypertonic (0.8 M NaCl) saline (1 ml/100 g body wt ip). Rats injected with CTb in the insular cortex and stimulated with hypertonic saline had increased numbers of Fos/CTb double-positive neurons in the paraventricular, rhomboid, and reuniens thalamic nuclei, whereas those rats injected with CTb in the cingulate cortex and challenged with hypertonic saline had increased numbers of Fos/CTb double-positive neurons in the medial part of the mediodorsal, interanteromedial, anteromedial, and ventrolateral part of the laterodorsal thalamic nuclei. Rats injected with CTb in the dorsal midline of the thalamus and challenged with hypertonic saline had increased numbers of Fos/CTb double-positive neurons within the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus, and insular cortex but not the subfornical organ. A small proportion of the CTb-positive neurons in the OVLT were immunopositive for transient receptor potential vanilloid 1, a putative osmoresponsive membrane protein. These results identify functional thalamocortical pathways involved in relaying osmotic signals to the insular and cingulate cortex and may provide a neuroanatomical framework for the emotional aspects of thirst.  相似文献   

9.
Central effects of dehydration are stimulated by osmotic stimuli, the reduced input of volume receptors, and angiotensin II. The subfornical organ (SFO) and organum vasculosum laminae terminalis (OVLT) have become accepted as putative receptor sites for angiotensin II in the brain. The exact quantitative relationship between the hours of water deprivation and the amount of angiotensin generated peripherally and whether that amount is sufficient to induce thirst centrally have not been established, but there is no question that when animals are dehydrated their angiotensin levels rise and the animals are thirsty. Attempts to block centrally the contribution of angiotensin II to thirst have been variable and cholinergic inputs have to be blocked at the same time. Various stimuli for thirst interact in a parallel fashion, and when one stimulus is blocked the other stimuli are still effective. Plasma angiotensin II may induce natural thirst, but how it enters the brain still remains to be explained. Although the SFO and OVLT have no blood-brain barrier, the blood supply to these organs acts as a limited perfusion system whereby blood-borne proteins cannot diffuse far from the capillary bed. A second set of receptors is found on the ventricular surface of the OVLT, as shown by fluorescence labeled angiotensin II. The connection between the SFO and OVLT was cut by discrete knife cuts. Drinking to angiotensin II intraventricularly was not significantly altered but the pressor response was reduced by 50%. These results can be explained by a circuit for drinking passing down below the level of the knife cut and a separate pressor pathway passing dorsally through the area that was cut by the knife. Thirst and pressor neural circuits beginning with angiotensin receptors could explain some of the data accumulated with the AV3V syndrome that occurs when the OVLT and nucleus medianas are destroyed.  相似文献   

10.
Expression of a c-Jun NH(2)-terminal protein kinase (JNK), also known as stress-activated protein kinase (SAPK) in rodents, has been implicated in the ability of cells to respond to a variety of stressors. In nonmammalian cells, JNK participates in the regulation of cell volume in response to hyperosmotic stress. To explore the possibility that JNK may participate in the transduction of osmotic information in mammals, we evaluated the expression of JNK immunoreactivity in neuroendocrine cells of the supraoptic nucleus. Low basal expression of JNK-2 (SAPK-alpha) and JNK-3 (SAPK-beta) was seen in vivo and in vitro. During water deprivation, JNK-2 increased in the supraoptic nucleus but not in the cortex. Osmotic or glutamate receptor stimulation in vitro also resulted in an increase in JNK-2 that was tetrodotoxin (TTX) insensitive and paralleled by increased nuclear phospho-c-Jun immunoreactivity. A TTX-sensitive increase in JNK-3 was seen in smaller neurons. Thus different JNK pathways may mediate individual cellular responses to osmotic stress, with JNK-2 linked to osmotic and glutamate receptor stimulation in magnocellular neuroendocrine cells.  相似文献   

11.
Arginine vasopressin (AVP) is involved in the homeostatic responses numerous life-threatening conditions, for example, the promotion of water conservation during periods of dehydration, and the activation of the hypothalamo-pituitary adrenal axis by emotional stress. Recently, we generated new transgenic animals that faithfully express an AVP-enhanced green fluorescent protein (eGFP) fusion gene in the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the suprachiasmatic nucleus (SCN) of the hypothalamus. In these transgenic rats, marked increases in eGFP fluorescence and fusion gene expression were observed in the magnocellular division of the PVN and the SON, but not the SCN, after osmotic challenges, such as dehydration and salt loading, and both acute and chronic nociceptive stimuli. In the parvocellular division of the PVN, eGFP expression was increased after acute and chronic pain, bilateral adrenalectomy, endotoxin shock and restraint stress. In the extra-hypothalamic areas of the brain, eGFP expression was induced in the locus coeruleus after the intracerebroventricular administration of colchicine. Next, we generated another transgenic rat that expresses a fusion gene comprised of c-fos promoter-enhancer sequences driving the expression of monomeric red fluorescent protein 1 (mRFP1). In these transgenic rats, abundant nuclear fluorescence of mRFP1 was observed in the PVN, the SON and other osmosensitive areas after acute osmotic stimulation. Finally, we generated a double transgenic rat that expresses both the AVP-eGFP and c-fos-mRFP1 fusion genes. In this double transgenic rat, we have observed nuclear mRFP1 fluorescence in eGFP-positive neurons after acute osmotic stimulation. These unique transgenic rats provide an exciting new tool to examine neuroendocrine responses to physiological and stressful stimuli in both in vivo and in vitro preparations.  相似文献   

12.
Endocrine and renal parameters were measured in a desert rodent, Meriones crassus. In virgin females, the urine and plasma osmolality was 2018 +/- 136 and 325 +/- 3 mosm/kg (m +/- SEM), the level of circulating vasopressin, 162 +/- 22 pg/ml and the plasma renin activity 14.3 +/- 0.9 ng/ml per h. During pregnancy, the renin-angiotensin system was activated, and the plasma vasopressin values remained similar to those of virgin animals in spite of a lower blood plasma osmotic pressure. During this period, the regulation of the hydromineral balance was modified. These data suggest a lowering of the osmotic thresholds for vasopressin and possibly also for thirst during pregnancy in this desert rodent.  相似文献   

13.
Summary Prolonged thirst provokes an activation of the LHRH system which enables the visualization of fiber connections not seen in untreated control animals. This type of experimental stress situation increases the number of LHRH-containing fibers in the organum vasculosum laminae terminalis and in the median eminence. The number of LHRH-producing cells in the preoptic nucleus is increased and the fiber connection between this area and the median eminence can be observed. The tanycytes and the perikarya of the arcuate nucleus do not react with the antibody against LHRH. Moreover, during thirst, a network of LHRH-containing fibers is observed in the medial mammillary nucleus. The results obtained at the light microscopic level have been confirmed and supplemented by electron microscopic immunocytochemical observations.Supported by the Stiftung Volkswagenwerk and the Deutsche Forschungsgemeinschaft (Grant No. Kr 569/1) Acknowledgements. The author is greatly indebted to Dr. M. Dubois (Lab. de Physiol. de la Reprod., Nouzilly/France) for the generous gift of the LHRH antibody, and to Dr. L.A. Sternberger (Edgewood Arsenal, Maryland/USA) for supplying the peroxidase-antiperoxidase-complex. The skillful technical assistance of Mrs. H. Prien is thankfully acknowledged  相似文献   

14.
Kekki  M.  Attila  U.  Talanti  S. 《Cell and tissue research》1975,158(4):439-450
Thirst stimulation of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) was induced in rats by withholding all fluids during three days. 35S-cysteine was then intraperitoneally administered and the rats were killed at predetermined times and examined by autoradiography, applying the authors' previously described method. This experimental series totalling 51 animals was compared with a control series of 70 rats, similarly treated, who had had free access to water. The kinetic phenomena in SON and PVN were analysed in terms of the two-compartment model previously used, which gives an estimate of the neurosecretory material (NSM) secretion parameters and of those of the lumped structural cell protein turnover in the nuclei. The kinetics of the precursor amino acids after administration of labelled cysteine were also assessed. Determinations of the label uptake at two specific times in the experiment, in the infundibular nucleus, ventromedial nucleus and optic nerve tissue in both series served as a check on the specifity of the structural protein turnover changes observed. Compared with the controls, the turnover rate of the slow compartment was more than tripled in the dehydrated rats, while that of the fast compartment had gone down to about one-third; both effects very nearly equal in SON and PVN. These results are compatible with the concept according to which thirst stimulates the SON and PVN equally. A distinct, and strikingly equal, hump was observed (2 hours after label administration) in all specific activity curves, also in the precursor serum concentration, and it is probably due to recycling of 35s from cysteine to methionine. This and other circumstances render the phenomena rather too complex for a straight-forward evaluation by the two-compartment model. Even so, the observations are believed to furnish good evidence of the biological verity of this model as well as the thirst-induced changes elicited.  相似文献   

15.
To test the hypothesis that estrogen reduces the operating point for osmoregulation of arginine vasopressin (AVP), thirst, and body water balance, we studied nine women (25 +/- 1 yr) during 150 min of dehydrating exercise followed by 180 min of ad libitum rehydration. Subjects were tested six different times, during the early-follicular (twice) and midluteal (twice) menstrual phases and after 4 wk of combined [estradiol-norethindrone (progestin), OC E + P] and 4 wk of norethindrone (progestin only, OC P) oral contraceptive administration, in a randomized crossover design. Basal plasma osmolality (P(osm)) was lower in the luteal phase (281 +/- 1 mosmol/kgH(2)O, combined means, P < 0.05), OC E + P (281 +/- 1 mosmol/kgH(2)O, P < 0.05), and OC P (282 +/- 1 mosmol/kgH(2)O, P < 0. 05) than in the follicular phase (286 +/- 1 mosmol/kgH(2)O, combined means). High plasma estradiol concentration lowered the P(osm) threshold for AVP release during the luteal phase and during OC E + P [x-intercepts, 282 +/- 2, 278 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O, for follicular, luteal (combined means), OC E + P, and OC P, respectively; P < 0.05, luteal phase and OC E + P vs. follicular phase] during exercise dehydration, and 17beta-estradiol administration lowered the P(osm) threshold for thirst stimulation [x-intercepts, 280 +/- 2, 279 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O for follicular, luteal, OC E + P, and OC P, respectively; P < 0.05, OC E + P vs. follicular phase], without affecting body fluid balance. When plasma 17beta-estradiol concentration was high, P(osm) was low throughout rest, exercise, and rehydration, but plasma arginine vasopressin concentration, thirst, and body fluid retention were unchanged, indicating a lowering of the osmotic operating point for body fluid regulation.  相似文献   

16.

Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC’s ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.

  相似文献   

17.
Several neuroactive peptides have been implicated in thirst and sodium appetite in different species; three peptides are considered here. The best established of these is the octapeptide angiotensin II, which when administered systemically or intracranially causes completely normal drinking behaviour in all vertebrates tested, including many mammals, four or five birds, one reptile and one bony fish. In the rat, in which the original experiments were carried out, injection of a few femtomoles of angiotensin II caused a brisk drinking response within a minute or so of injection at a time of day when the animal would usually be resting. The response is usually completed within 10 min and after the larger doses the amounts of water taken may approach what the animal would normally drink in the course of 24 h. Another response to intracranial angiotensin, seen so far only in the rat, is an increase in sodium appetite. This is slower in onset than thirst, lasts for many hours and the response tends to become greater with repeated injections of hormone. Naturally occurring increases in sodium appetite may be caused by angiotensin generated by the action of cerebral isorenin. A second neuroactive peptide that affects thirst is the undecapeptide eledoisin, which is found in the salivary glands of certain Mediterranean cephalopods. Eledoisin and, to a lesser extent, substance P, with which it is related, are potent intracranial dipsogens in the pigeon, producing behaviour that is indistinguishable from that produced by angiotensin. However, in contrast to the stimulatory action of angiotensin on drinking behaviour in all other vertebrate species tested, these substances specifically depress drinking in the rat. A third peptide that has been implicated in thirst is antidiuretic hormone (ADH). This hormone has a profound but indirect effect on water intake in diabetes insipidus. In the dog, however, ADH in physiological amounts may influence thirst mechanisms by direct action on the central nervous system. In this species, but not in the rat, ADH lowers the threshold of thirst in response to osmotic stimulation and also to infusion of angiotensin. Of these three peptides, and others not mentioned here, angiotensin II has the best claim to be regarded as a neuroactive peptide. It alone is always dipsogenic when injected into the brain and it also stimulates sodium appetite. Whether the effects of angiotensin, on thirst and sodium appetite should be regarded as manifestations of the activity of a classical endocrine system, of a paracrine system, of a neurotransmitter system, or of all of these, cannot be decided at present. But these actions of angiotensin, when considered with its other actions on the distribution and conservation of body fluid, show that the hormone is intimately concerned in extracellular fluid volume control.  相似文献   

18.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

19.
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed.  相似文献   

20.
The functional projections from pressor sites in the subfornical organ (SFO) were identified using the 2-deoxyglucose (2-DG) autoradiographic method in urethane-anesthetized, sinoaortic-denervated rats. Autoradiographs of brain and spinal cord sections taken from rats whose SFO was continuously stimulated electrically for 45 min with stereotaxically placed monopolar electrodes (150 microA, 1.5-ms pulse duration, 15 Hz) following injection of tritiated 2-DG were compared with control rats that received intravenous infusions of pressor doses of phenylephrine to mimic the increase in arterial pressure observed during SFO stimulation. Comparisons were also made to autoradiographs from rats in which the ventral fornical commissure (CFV), just dorsal to the SFO, was electrically stimulated. The pressor responses during either electrical stimulation of the SFO or intravenous infusion of phenylephrine were similar in magnitude. On the other hand, stimulation of the CFV did not elicit a significant pressor response. Electrical stimulation of the SFO increased 2-DG uptake, in comparison to the phenylephrine-infused rats, in the nucleus triangularis, septofimbrial nucleus, lateral septal nucleus, nucleus accumbens, bed nucleus of the stria terminalis, dorsal and ventral nucleus medianus (median preoptic nucleus), paraventricular nucleus of the thalamus, hippocampus, supraoptic nucleus, suprachiasmatic nucleus, paraventricular nucleus of the hypothalamus, and the intermediolateral nucleus of and central autonomic area of the thoracic spinal cord. In contrast, in rats whose CFV was stimulated, these nuclei did not demonstrate changes in 2-DG uptake compared with control animals that received pressor doses of phenylephrine. These data have demonstrated some of the components of the neural circuitry likely involved in mediating the pressor responses to stimulation of the SFO and the corrective responses to activation of the SFO by disturbances to circulatory and fluid balance homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号