首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 platidic glutamine synthetase We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586.  相似文献   

2.
3.
M. W. Elmlinger  H. Mohr 《Planta》1992,188(3):396-402
The appearance of glutamine synthetase (GS. EC 6.3.1.2) in response to light and nitrogen (NO 3 - , NH 4 + ) was studied in the organs (roots, hypocotyl, cotyledonary whorl) of the Scots pine (Pinus sylvestris L.) seedling. Although GS activity was found to be mainly (> 80%) located in the whorl where it increased strongly in response to light, a significant GS synthesis was also detected in dark-grown seedlings. Anion-exchange chromatography was used to resolve two GS isoforms which appeared to be regulated differentially in the cotyledonary whorls. The isoform (presumably plastidic GS2) which eluted from the column at 90 mM KCl increased drastically in response to light. The other isoform (presumably cytosolic GS1), which eluted at 200 mM KCl, was not stimulated by light but tended to disappear during the experimental period (4 to 12 d after sowing). Immunoblotting of pine extract yielded a prominent band with a molecular weight of 43 kDa. The linear correlation between GS activity and immunodetectable GS protein could be extrapolated through zero, showing that any increase of GS2 activity is to be attributed to the de-novo synthesis of GS protein. Gelfiltration chromatography yielded a molecular mass for the GS holoenzyme of 340 kDa, a value which supports an octameric quarternary structure as previously suggested for angiosperms. While supplying seedlings with 10 mM NO 3 - stimulated GS synthesis in the whorl by 12%, 10 mM NH 4 + caused an incipient ammonium toxicity. Experiments using dischromatic light (simultaneous treatment with two light beams to vary the level of the physiologically active form of phytochrome, Pfr, in blue light) revealed that synthesis of GS2 was controlled by light in the same way as previously shown for ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1). Up to 10 d after sowing the strong light effect could be attributed to phytochrome action whereas between 10 and 12 d after sowing phytochrome control of GS-synthesis failed if no blue/ultraviolet-A light was provided. The data show that blue light is required to maintain responsiveness of GS2 synthesis to phytochrome. Both enzymes, GS2 as well as Fd-GOGAT, appear to be regulated coordinately to meet the demands of ammonium assimilation.Abbreviations and Symbols B blue light - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1); - GS glutamine synthetase (EC 6.3.1.2) - R red light - RG9 long-wavelength far-red light defined by the properties of Schott glass filter RG9 - =Pfr/Ptot far-red absorbing form of phytochrome/total phytochrome, wavelength-dependent photoequilibrium of the phytochrome system Research supported by Deutsche Forschungsgemeinschaft (SFB 46 and Schwerpunkt Physiologie der Bäume). We thank J.M. Penther, (Institut für Biologie II, Freiburg, FRG) for his advice on the chromatographic techniques.  相似文献   

4.
Soluble protein extracts and chloroplasts from a serial sequence of transverse sections of a 7-d-old wheat leaf (Triticum aestivum cv. Maris Huntsman) were used to study changes in the activity of glutamine synthetase (GS; EC 6.3.1.2) during cell and chloroplast development. Glutamine synthetase activity increased more than 50-fold per cell from the base to the tip of the wheat leaf. Two isoenzymes of GS were separated using fast protein liquid chromatography (FPLC). Glutamine synthetase localized in the cytoplasm (GS1) eluted at about 0.21 M NaCl, and the isoenzyme localized in the chloroplast (GS2) eluted at about 0.33 M NaCl. The increase in GS activity during leaf development was found to be caused primarily by an increase in the activity of the chloroplast GS2. The activity of the cytoplasmic GS1 remained constant as the cells were displaced from the base to the tip of the leaf, whereas GS2 activity increased within the chloroplast throughout development. At the base of the leaf, 26% of total GS activity was cytoplasmic; the remaining 74% was in the chloroplast. At 10 cm from the base, only 4% of the activity was cytoplasmic, and 96% was in the chloroplast. The results indicate that the chloroplast GS2 is probably responsible for most of the ammonia assimilation in the mature wheat leaf, whereas cytoplasmic GS1 may serve a role in immature developing leaf cells.Abbreviations FPLC fast protein liquid chromatography - GS glutamine synthetase - GS1 cytoplasmic glutamine synthetase - GS2 chloroplast glutamine synthetase  相似文献   

5.
G. Mäck  R. Tischner 《Planta》1994,194(3):353-359
In extracts from the primary leaf blade of sugar beet (Beta vulgaris L.) we separated a chloroplastic isoform (GS 2) of glutamine synthetase (GS, EC 6.3.1.2) and one or two (depending on leaf age) cytosolic isoforms (GS 1a and GS 1b). The latter were prominent in the early (GS 1a) and late stages of leaf ontogeny (GS 1a and GS 1b), whereas during leaf maturation GS 2 was the predominantly active GS isoform. The GS 1 isoforms were active exclusively in the octameric state although tetrameric GS 1 protein was detected immunologically. Their activity stayed at a relatively constant level during leaf ontogeny; an increase was observed only in the senescent leaf. The activity of GS 2, however, changed drastically during primary leaf ontogeny and was modulated by changes in the oligomeric state of the active enzyme. In the early and late stages of leaf ontogeny when GS 2 activity was low (lower than that of the GS 1 isoforms), GS 2 was active only in the octameric state. In the maturing leaf, when GS 2 activity had reached its maximum level (much higher than that of the GS 1 isoforms), 80 of total GS 2 activity was due the activity of the tetrameric form of the enzyme and 20 was due to octameric GS 2. Tetrameric GS 2 was a hetero-tetramer and thus not the unspecific dissociation product of homo-octameric GS 2. In addition, GS 2 activity was modulated by an activation/inactivation of the tetrameric GS 2 protein. Due to an activation of the GS 2 tetramer, the activity of tetrameric GS 2 increased during leaf maturation from zero level 23-fold compared with that of GS 1a and 18-fold compared with that of GS 1b. Possible activators of tetrameric GS 2 are thiol-reactive substances. During leaf senescence, GS 2 activity decreased to zero; this decrease was due to an inactivation of the tetrameric GS 2 protein probably caused by oxidation.Abbreviations FLL final lamina length - FPLC fast protein liquid chromatography - GS glutamine synthetase - GHA -glutamyl hydroxamate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

6.
The occurrence of GS isoenzymes has been investigated in Scots pine (Pinus sylvestris) seedlings. A transient increase of glutamine synthetase (GS, EC 6.3.1.2) activity was observed in the cotyledon whorl of plants treated with the herbicide phosphinotricin (PPT). The increase in GS activity was accompanied by a parallel accumulation of GS1 protein, which remained at high levels throughout the PPT treatment. Two-dimensional SDS-PAGE western analysis showed that pine extracts contained two GS1 polypeptides which differ in their corresponding isoelectric points. Analysis of crude extracts by ion-exchange chromatography led to the separation of two GS isoforms. The first peak (GS1-a) eluted from the columns at a low ionic strength (0.15-0.18 M KCl), whereas the second one (GS1-b) was detected at 0.5 M KCl. A detailed molecular study of both GS holoenzymes confirmed that their subunits were similar in size (about 41 kDa) but different in charge. All these data clearly demonstrate the presence of two GS1 forms in Scots pine cotyledons. Moreover, a comparison of isolated GS isoproteins with the recombinantly expressed Scots pine cytosolic subunit suggests that GS1-a corresponds to the previously characterized cDNA (pGSP114) whereas GS1-b is a minor GS isoenzyme with increased relative abundance in phosphinotricin treated plants.  相似文献   

7.
Scots pine (Pinus sylvestris L.) seedlings grown in nutrient solution in controlled-environment chambers were used. The effects of a shortday (SD, early autumn) treatment on growth and the content of free and alkaline hydrolysable abscisic acid (ABA) in shoots and roots were investigated. The weekly relative growth rates of seedlings grown continuously under long-day (LD, summer) conditions were stable at approx. 0.08 g g–1 d–1 between weeks four and eight from germination. Weekly relative growth rates of seedlings transferred to SD conditions decreased rapidly to a then stable level of approx. 0.04 g g–1 d01. Shoot elongation ceased within two weeks of SD treatment. The content of both free and alkaline hydrolysable ABA was approx. 40–50% higher in shoots of seedlings grown for five weeks in LD plus one week in SD than in shoots of seedlings grown for five or six weeks in LD. Two additional weeks of SD did not change the free ABA content. Three weeks in simulated late autumn (SD but decreased temperatures) and three weeks in simulated winter (lower light intensity and temperature) further increased the content of free ABA in the shoots. A transfer back to LD conditions reduced the ABA content to a level equal to the level found during the first LD period. The recovery of radioactive ABA at certain times after application ofr[3H] ABA was the same in shoots and roots of LD-grown and SD-treated seedlings.Abbreviations ABA abscisic acid - LD long day(s) - RGR7 weekly relative growth rates - SD short day(s)  相似文献   

8.
Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.  相似文献   

9.
The relationship between inbreeding depression and inbreeding coefficient (F) for several important traits was investigated in an 11-year trial of maritime pine (Pinus pinaster). Five levels of inbreeding (F=0; 0.125; 0.25; 0.5; 0.75) were obtained in a mating design involving ten plus-trees, or their progenies, as parents (total of 51 families). For F=0.75, the mean inbreeding depressions were 27% for height, 37% for circumference at breast height (63% for bole volume), 23% for basal straightness (better straightness of the inbred trees), and 89% for female fertility (number of cones). Large differences were observed among inbred families for the same level of inbreeding. The evolution of depression with F was more or less linear, depending on the traits. Significant differences among F-levels appeared very early for height (from 5-years of age). Inbreeding depression was much more expressed during unfavorable years than during favorable years for yearly height growth. When compared with other Pinus species, maritime pine appears to be less affected by inbreeding, especially for the percentage of filled seeds and general vigor. A reduced genetic load in maritime pine may result from the evolutionary history of the species and its scattered distribution.  相似文献   

10.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

11.
Localization of glutamine synthetase in thin sections of nitrogen-fixing Anabaena cylindrica was performed using immuno-gold/transmission electronmicroscopy. The enzyme was present in all of the three cell types possible; vegetative cells, heterocysts and akinetes. The specific gold label was always more pronounced in heterocysts compared with vegetative cells, and showed a uniform distribution in all three types. No specific label was associated with subcellular inclusions such as carboxysomes, cyanophycin granules and polyphosphate granules. When anti-glutamine synthetase antiserum was omitted, no label was observed.Abbreviation GS glutamine synthetase  相似文献   

12.
13.
In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine–glutamate translocator. Glutamine–glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S‐adenosylmethionine synthesis is guaranteed.  相似文献   

14.
15.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

16.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

17.
18.
Some properties of the biosynthetic and -glutamyltransferase activities of glutamine synthetase (EC 6.3.1.2) from Anabaena cylindrica are described, including requirement for divalent cations, pH optimum and Km for substrates. The -glutamyl-transferase reaction was inhibited by L-glutamate, ammonia and ATP. The inhibition by L-glutamate and ammonia was competitive for L-glutamine and non-competitive for hydroxylamine. Both the biosynthetic and the -glutamyltransferase activities of the desalted enzyme were much more sensitive to inactivation by treatments such as urea, hydroxylamine and incubation at 50° C than the preparation which contained a divalent cation. The effects of some substrates of these reactions on protection against thermal denaturation and hydroxylamine were examined. An interpretation of these results in terms of the sequence of binding of substrates both in the biosynthetic and the -glutamyltransferase reactions are discussed.  相似文献   

19.
20.
The megagametophytes of seeds of Pinus pinaster Ait. contain two types of oligomeric globulins of approximately 175 and 190 kDa that are comprised of 47-kDa and 27- and 22-kDa, monomers, respectively, joined by weak interactions. The 27- and 22-kDa components were purified and their N-terminal sequences determined. Both polypeptides were inherited as if they were coded by a single unit of recombination. The results obtained suggest that these two polypeptides originate from a single protein that undergoes proteolytic processing. The characteristics of this P. pinaster globulin indicate that it is a member of the 7S globulin family of seed storage proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号