首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
When the Stockholm and 468C strains of type C and the 1873 strain of type D Clostridium botulinum are "cured" of their prophages, they simultaneously discontinue the production of their dominant toxins (C(1) and D), but they continue to produce a second antigenically monospecific toxin (C(2)). These "cured" strains of types C and D therefore become indistinguishable with respect to the toxin produced. Fifteen type C cultures received from other laboratories discontinued to produce the dominant toxin when subcultured in broth. The C(2) toxin, however, was produced by eight of these cultures. The C(2) toxin is produced by these cultures as a protoxin that requires treatment with trypsin before its toxicity can be demonstrated. Of the 21 type C cultures that produce the C(1) toxin, 20 were shown to produce the C(2) toxin. The filtrates of 14 of these cultures required trypsin treatment before the C(2) toxicity could be demonstrated. Low levels of toxicity could be demonstrated in the six remaining culture fluids without trypsin; toxicity, however, was increased with trypsin.  相似文献   

2.
单克隆抗体S2C4对2型志贺毒素及其亚型毒性的中和作用   总被引:1,自引:0,他引:1  
纯化的2型志贺毒素(Shiga toxin 2,Stx2)经福尔马林脱毒后免疫BALB/c小鼠制备Stx2单克隆抗体,用体外中和试验对具有中和活性的阳性抗体克隆进行初筛,对所获得的中和抗体的重、轻链同种型及结合特异性进行鉴定,其中和保护作用通过体内、体外中和试验加以验证,最后,中和抗体对Stx2亚型Stx2c和Stx2vha的中和谱用体内中和试验验证.结果显示,12株抗Stx2的阳性抗体克隆中,只有1株具有中和活性,命名为S2C4,其重、轻链同种型为G1/κ,其靶分子为Stx2的A亚单位,与Stx2的B亚单位或Stx1不结合.在体外中和试验中S2C4可有效中和Stx2对Vero细胞的杀伤作用,同样,S2C4可中和致死量的Stx2及其亚型Stx2c和Stx2vha对小鼠的毒性作用.该抗体有望成为治疗产志贺毒素大肠杆菌感染的候选分子.  相似文献   

3.
Eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Of 17 strains from the American Type Culture Collection that were studied for their ability to produce EC and PR toxin, 13 produced these metabolites. Toxin production by strains grown in solid media (10 cereals and 8 other agricultural products) was also investigated. Production of EC and PR toxin by fungi grown on cereals was greater than production of EC and PR toxin by fungi grown on legumes; fungi grown on corn produced the greatest amount of PR toxin. Addition of corn extracts to the culture medium greatly increased the production of EC and PR toxin in a coordinated manner, with no significant change in mycelial dry weight. The fungi produced the highest levels of EC and PR toxin at 20 to 24 degrees C depending on the strain. Toxin production was higher in stationary cultures than in cultures that were gently shaken at 120 rpm. The optimum pH for production of both EC and PR toxin was around pH 4.0. With regard to spore age, toxin levels did not change significantly when we used spores obtained from fungi that were grown at 24 degrees C for 3 up to 48 days.  相似文献   

4.
Eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Of 17 strains from the American Type Culture Collection that were studied for their ability to produce EC and PR toxin, 13 produced these metabolites. Toxin production by strains grown in solid media (10 cereals and 8 other agricultural products) was also investigated. Production of EC and PR toxin by fungi grown on cereals was greater than production of EC and PR toxin by fungi grown on legumes; fungi grown on corn produced the greatest amount of PR toxin. Addition of corn extracts to the culture medium greatly increased the production of EC and PR toxin in a coordinated manner, with no significant change in mycelial dry weight. The fungi produced the highest levels of EC and PR toxin at 20 to 24 degrees C depending on the strain. Toxin production was higher in stationary cultures than in cultures that were gently shaken at 120 rpm. The optimum pH for production of both EC and PR toxin was around pH 4.0. With regard to spore age, toxin levels did not change significantly when we used spores obtained from fungi that were grown at 24 degrees C for 3 up to 48 days.  相似文献   

5.
Summary The purification and crystallization of type C botulinum toxin along with its physical characteristics are described. The shape of Clostridium botulinum type C toxin molecule is globular like a pressed ball with a 7.4 nm diameter and a 4.3 urn thickness. The molecular volume is approximately 185 nl and the molecular weight is 141 000. The toxin molecule is composed of two parts, which are separable under appropriate conditions. These parts have some differences in the electrophoretic properties, amino acid distribution, immunological, and functional characteristics. The toxin molecule can be reconstituted by association of S-S bond between the two chains. The expression of the toxicity requires that the fragments of the polypeptide chain carrying the necessary information be functionally organized for the proper development of the specific tertiary structure for active conformation.  相似文献   

6.
The substrate specificities of the actin-ADP-ribosylating toxins, Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin were studied by using five different preparations of actin isoforms: alpha-skeletal muscle actin, alpha-cardiac muscle actin, gizzard gamma-smooth muscle actin, spleen beta- and gamma-cytoplasmic actin, and aortic smooth muscle actin containing alpha- and gamma-smooth muscle actin isoforms. C. perfringens iota toxin ADP-ribosylated all actin isoforms tested, whereas C. botulinum C2 toxin did not modify alpha-skeletal muscle actin or alpha-cardiac muscle actin. Spleen beta/gamma-cytoplasmic actin and gizzard gamma-smooth muscle actin were substrates of C. botulinum C2 toxin. In the aortic smooth muscle actin preparation, gamma-smooth muscle actin but not alpha-smooth muscle actin was ADP-ribosylated by C. botulinum C2 toxin. The data indicate that, in contrast to C. perfringens iota toxin, C. botulinum C2 toxin ADP-ribosylates only beta/gamma-cytoplasmic and gamma-smooth muscle actin and suggest that the N-terminal region of actin isoforms define the substrate specificity for ADP-ribosylation by C. botulinum C2 toxin.  相似文献   

7.
We attempted to characterize ADP-ribose-amino acid bonds formed by various bacterial toxins. The ADP-ribose-arginine bond formed by botulinum C2 toxin in actin was cleaved with a half-life of about 2 h by treatment with hydroxylamine (0.5 M). In contrast, the ADP-ribose-cysteine bond formed by pertussis toxin in transducin and the ADP-ribose-amino acid linkage formed by botulinum ADP-ribosyltransferase C3 in platelet cytosolic proteins were not affected by hydroxylamine. HgCl2 cleaved the ADP-ribose-amino acid bond formed by pertussis toxin in transducin but not those formed by botulinum C2 toxin or botulinum ADP-ribosyltransferase C3 in actin and platelet cytosolic proteins, respectively. NaOH (0.5 M) cleaved the ADP-ribose-amino acid bonds formed by botulinum C2 toxin and pertussis toxin but not the one formed by botulinum ADP-ribosyltransferase C3. The data indicate that the ADP-ribose bond formed by botulinum ADP-ribosyltransferase C3 differs from those formed by the known bacterial ADP-ribosylating toxins.  相似文献   

8.
Clostridium botulinum C2 toxin is an ADP‐ribosyltransferase, causing depolymerization of the actin cytoskeleton in eukaryotic cells. The C2 toxin is a binary toxin consisting of the enzymatic subunit C2I and the binding subunit C2II. Proteolytical activation of the binding subunit triggers the formation of heptameric structures (C2IIa), which bind to cellular receptors. C2I is able to bind to C2IIa oligomers, and it has been suggested that the whole complex is internalized by a raft‐dependent mechanism. Here we analysed by which mechanism C2 toxin is endocytosed. In HeLa cells expressing a dominant‐negative dynamin mutant, cytotoxicity and C2 toxin uptake were blocked. Furthermore, siRNA‐mediated knockdown of flotillins or inhibition of Arf6 function, proteins suggested to be involved in dynamin‐independent endocytosis, did not affect C2 toxicity. Knockdown of caveolin did not inhibit endocytosis of C2 toxin, whereas inhibition of clathrin function reduced the uptake of C2 toxin and delayed the cytotoxic effect. Finally, we found evidence for a Rho‐mediated uptake of C2 toxin. In conclusion, C2 toxin is endocytosed by dynamin‐dependent mechanisms and we provide evidence for involvement of clathrin and Rho.  相似文献   

9.
A procedure is described for the purification of hemagglutinin-free Clostridium botulinum type C toxin. The toxin was purified approximately 1,000-fold from the original culture supernatant in an overall yield of 60% to a final specific toxicity of 4.4 x 10(7) minimal lethal doses/mg of protein. The toxin had a molecular weight of 141,000 and consisted of a heavy and a light chain. The molecular weights of the subunits were approximately 98,000 and 53,000. When comparing the molecular size and composition of type C toxin to that of botulinum toxins of different types, some common features may be suggested; i.e., the toxin has a molecular weight between 141,000 to 160,000 and is comprised of a heavy and a light chain linked by disulfide bonds (or bond).  相似文献   

10.
Isolation and molecular size of Clostridium botulinum type C toxin.   总被引:7,自引:3,他引:7       下载免费PDF全文
A procedure is described for the purification of hemagglutinin-free Clostridium botulinum type C toxin. The toxin was purified approximately 1,000-fold from the original culture supernatant in an overall yield of 60% to a final specific toxicity of 4.4 x 10(7) minimal lethal doses/mg of protein. The toxin had a molecular weight of 141,000 and consisted of a heavy and a light chain. The molecular weights of the subunits were approximately 98,000 and 53,000. When comparing the molecular size and composition of type C toxin to that of botulinum toxins of different types, some common features may be suggested; i.e., the toxin has a molecular weight between 141,000 to 160,000 and is comprised of a heavy and a light chain linked by disulfide bonds (or bond).  相似文献   

11.
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.  相似文献   

12.
We have purified from Clostridium spiroforme strain 246 an heterogeneous population of proteins (Sa) ranging from 43 to 47 kilodaltons exhibiting ADP-ribosyl transferase activity as do C. botulinum C2 toxin component I or the ia chain of C. perfringens E iota toxin. C. spiriforme Sa had alone no activity upon injection in mice or inoculated to Vero cells. When spiroforme ADP ribosyl transferase were mixed with a trypsin activated protein (Sb) separated from C. spiroforme bacterial supernatant, a lethal effect in mice and cytotoxicity on Vero cells were recorded. The Sa cross-reacted immunologically with either the light chain of C. perfringens E iota toxin or the ADP-ribosyl transferase from C. difficile 196 strain. No immunological relatedness was observed between Sa and C2 toxin component I. C. spiroforme toxin is thus another binary toxin close to iota.  相似文献   

13.
Clostridium botulinum type C toxin consists of a heavy and a light chain with molecular weights of 98,000 and 53,000, respectively, which are linked by one disulfide bond. The two components were separated from each other by quaternary aminoethyl Sephadex A-50 column chromatography by stepwise elution with NaCl in 27.5 mM borax-45 mM sodium dihydrogen phosphate buffer, pH 8.0, containing 5% 2-mercaptoethanol at 0 degrees C. The purified components had different amino acid compositions and antigenicities, and the toxicity of the toxin was neutralized completely by either anti-heavy chain Fab or anti-light chain Fab. the two components could be reconstituted to form an active molecule with recovered toxicity which varied according to the method used. Maximum recovery was obtained in a system in which the intersubunit S--S bond was first formed in the presence of high concentration of neutral salts, after which the concentration of salt was gradually decreased. The reconstituted preparation was highly toxic and had the same properties as the parental toxin on chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunodiffusion. By the use of three perturbants, the fractions of exposed tryptophans and tyrosines of the preparation were found to be almost the same as that of the parental toxin.  相似文献   

14.
The hemolytic activity of deoxynivalenol and T-2 toxin.   总被引:4,自引:0,他引:4  
The hemolytic effects of deoxynivalenol (DON) and T-2 toxin (T-2) individually on rat erythrocytes were studied at different concentrations. Sodium azide was used as an enzyme inhibitor to prevent T-2 toxin metabolism. The concentration of T-2 was controlled by GC-MS and no decrease of the toxin was found during the time of the experiment. In spite of the much higher toxicity of T-2 toxin to eucaryotic cells, DON and T-2 showed similar lytic activity toward erythrocytes at high and low concentrations. Neither of these toxins at a concentration of 130 micrograms/ml, produced significant hemolysis even after 11 hr incubation. This finding suggests that there is a threshold level for both T-2 and DON, below which the lytic reaction does not occur. An additional hemolysis test was conducted in the presence of mannitol, glutathione, ascorbic acid, alfa-tocopherol, and histidine. The assay demonstrated that all the compounds inhibited to some extent the hemolytic reaction of the toxins. It is suggested that DON and T-2 exert their toxicity on procaryotic cells in three different ways: by penetrating the phospholipid bilayer and acting at the subcellular level, by interacting with the cellular membranes, and by free radical mediated phospholipid peroxidation. Most probably, more than one mechanism operates at the same time.  相似文献   

15.
Hemagglutinating and binding properties of botulinum C2 toxin   总被引:1,自引:0,他引:1  
To characterize the binding substance(s) for botulinum C2 toxin, the hemagglutinating activity of component II of botulinum C2 toxin (C2II) was studied by hemagglutination and hemagglutination inhibition. Human and animal erythrocytes were agglutinated by trypsinized C2II much more strongly than by untreated C2II. Trypsinized C2II agglutinated neuraminidase-treated erythrocytes more strongly than intact, trypsin- and pronase-treated ones. On the other hand, trypsin- and pronase-treated erythrocytes were more weakly hemolyzed by trypsinized C2II than intact and neuraminidase-treated ones, and trypsinized C2II showed both hemagglutinating and hemolytic activities to these erythrocytes. Hemagglutination of trypsin-treated human type B erythrocytes was inhibited by galactose, N-acetylgalactosamine, N-acetylglucosamine, L-fucose and mannose. Thyroglobulin and bovine salivary mucin were much stronger inhibitors. From these findings, the binding substance(s) for botulinum C2 toxin on erythrocytes is(are) suggested to be glycoprotein(s).  相似文献   

16.
ADP-ribosylation of platelet actin by botulinum C2 toxin   总被引:10,自引:0,他引:10  
Botulinum C2 toxin is a microbial toxin which possesses ADP-ribosyltransferase activity. In human platelet cytosol a 43-kDa protein was ADP-ribosylated by botulinum C2 toxin. Labelling of the 43-kDa protein using [32P]NAD as substrate was reduced by unlabelled NAD and nicotinamide. The label was removed by treatment with snake venom phosphodiesterase. Half-maximal and maximal ADP-ribosylation occurred at 0.1 microgram/ml and 3 micrograms/ml botulinum C2 toxin, respectively. The Km value of the ADP-ribosylation reaction for NAD was about 1 microM. The peptide map of the ADP-ribosylated 43-kDa protein was almost identical with platelet actin. The ADP-ribosylated 43-kDa substrate protein bound to and was eluted from immobilized DNase I in a manner similar to G-actin. Trypsin treatment of platelet cytosol decreased subsequent ADP-ribosylation of the 43-kDa protein without occurrence of smaller labelled polypeptides. Purified platelet actin was also ADP-ribosylated by botulinum C2 toxin with similar characteristics found with actin in platelet cytosol. Phalloidin decreased the ADP-ribosylation of actin in platelet cytosol and of isolated platelet actin. Half-maximal and maximal, about 90%, reduction of actin ADP-ribosylation was observed at 0.4 microM and 10 microM phalloidin, respectively. ADP-ribosylation of purified actin, induced by botulinum C2I toxin, abolished the formation of the typical microfilament network. The data indicate that platelet G-actin but not F-actin is a substrate of botulinum C2 toxin and that this covalent modification largely affects the functional properties of actin.  相似文献   

17.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C3-41总DNA中3.5KbHindIII片段上带有41.9和51.4kD二元毒素基因。  相似文献   

18.
Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770DYWL773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770DYWL773 of ECL 4 in the ABCC2.  相似文献   

19.
Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, Cry2Ab, Cry9Aa, and Cry9C. Compared with the unselected sister strain (BCS), the resistance ratio (BR) of one strain (BCS-Cry1C-1) to the Cry1C protoxin was 1,090-fold with high level of cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1J (RR > 390-fold). The cross-resistance to Cry1A, Cry1F, and Cry1J in this strain was probably related to the Cry1A resistance gene(s) that came from the initial field population and was caused by intensive sprayings of Bt products containing Cry1A protoxins. The neonates of this strain can survive on transgenic broccoli plants expressing either Cry1Ac or Cry1C toxins. The other strain (BCS-Cry1C-2) was highly resistant to Cry1C but not cross-resistant to other Bt protoxins. The neonates of this strain can survive on transgenic broccoli expressing Cry1C toxin but not Cry1Ac toxin. The gene(s) conferring resistance to Cry1C segregates independently from Cry1Ac resistance in these strains. The toxicity of Cry1E and Cry2Ab protoxins was low to all of the three strains. The overall progress of all work has resulted in a unique model system to test the stacked genes strategy for resistance management of Bt transgenic crops.  相似文献   

20.
Aktories K  Barth H 《Anaerobe》2004,10(2):101-105
Clostridium botulinum C2 toxin is the prototype of actin-ADP-ribosylating toxins. The toxin consists of the enzyme component C2I and the separated binding/translocation component C2II. C2II is proteolytically activated to form heptamers, which bind the enzyme component. After endocytosis of the receptor-toxin complex, the enzyme component enters the cytosol from an acidic endosomal compartment to modify G-actin at arginine177. Recent data indicate that chaperons are involved in the translocation process of the toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号