首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic and respiratory activities and gross production in relation to temperature conditions were investigated in the population of an evergreen herb,Pyrola japonica, growing on the floor of a deciduous forest in the warm temperate region of central Japan. Analysis of the temperature-photosynthesis relationship ofP. japonica leaves during the growing season indicated distinct seasonal changes in the temperature optimum for photosynthesis. This population was found to be acclimatable to ambient air temperatures exceeding 15C, but this acclimation became less pronounced under thermal conditions below 15 C. This plant possessed narrow photosynthetic optima in the warm season but wide optima in the cold season. The shape of the temperature-respiration curve did not vary significantly with the months except for April. The Q10 for respiration between 10 C and 20 C was calculated to be 1.93–2.65. Annual dry matter loss associated with respiration was estimated to amount to 159.1 g d.w.m−2 based on the measurements of the seasonal changes in the respiratory activity of each organ. Gross production of this population was estimated to be 219.3 g d.w.m−2 year−1 as the sum total of the net production (60.2 g d.w.m−2year−1) and the respiration. Monthly gross production was high in the early growing season, and low and stable in winter.  相似文献   

2.
One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night‐time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed ‘Constrained Source Optimization’ or CSO, which couples a localized near‐field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher‐order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least‐square fashion. The proposed method was field‐tested using 1 year of 30‐min mean CO2 concentration and CO2 flux measurements collected within a 17‐year‐old (in 1999) even‐aged loblolly pine (Pinus taeda L.) stand in central North Carolina. Eddy‐covariance flux measurements conditioned on large friction velocity, leaf‐level porometry and forest‐floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above‐ground plant components (c. 214 g C m?2 year?1) and forest floor (c. 989 g C m?2 year?1) for estimating gross primary production (c. 1800 g C m?2 year?1) with a NEE of c. 605 g C m?2 year?1 for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy‐covariance NEE and chamber‐based component flux measurements.  相似文献   

3.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

4.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

5.
Annual net production was estimated in the secondary coppice forest near Tokyo, which was dominated by a deciduous oak,Quercus serrata Thunb. Lateral growth of stems and old branches was directly estimated by examining the annual rings for 35 shoots in a clear-cut quadrat of 10m×10m. Phytomasses of current organs were also weighed in the quadrat. Preharvest losses of current organs were determined by twelve 0.5 m2 litter traps for fine litter and twelve 6 m2 quadrats for woody litter. Branch production was also assessed indirectly by use of the stem-branch allometry and death of branches. The results of the indirect method were in sufficient agreement with the result of the direct one. Grazing loss of leaves from the canopy was estimated directly from the loss in leaf area and indirectly from the animal faeces caught by the litter traps. Net production of the canopy trees was 149 kg a−1 year−1, in which leaf production was 36.9 kg. Animals grazed about 14% of the leaf area by the end of the growing season. True consumption of leaves by animals was 7.6% of leaf production or 10% of leaf mass. Production of undergrowth, mainly a dwarf bamboo,Pleioblastus chino Makino, was 28 kg a−1 year−1, being 15% of the total stand production. Productivity of this forest was significantly higher than that of cool-temperate deciduous broadleaf forests.  相似文献   

6.
Summary The carbon cycle of a loblolly pine plantation in North Carolina was examined during its 12th through 16th years from planting. Net primary production during the study period averaged 2056 g C m-2 year-1. With autotrophic respiration equal to 2068 g C, the calculated gross production was 4124 g C m-2 year-1. Heterotrophic respiration of 694 g C m-2 year-1 resulted in net ecosystem production of 1362 g C m-2 year-1. In carbon cycle comparisons between forest ecosystems, autotrophic respiration rates were found to be closely coupled to regional temperature.  相似文献   

7.
Temporal trends in photosynthetic capacity are a critical factorin determining the seasonality and magnitude of ecosystem carbonfluxes. At a mixed deciduous forest in the south‐eastern United States (Walker Branch Watershed, Oak Ridge, TN, USA), we independently measured seasonal trends in photosynthetic capacity (using single‐leaf gas exchange techniques) and the whole‐canopycarbon flux (using the eddy covariance method). Soil respiration was also measured using chambers and an eddy covariance system beneath the canopy. These independent chamber and eddy covariance measurements, along with a biophysical model (CANOAK), areused to examine how leaf age affects the seasonal pattern of carbon uptake during the growing season. When the measured seasonality in photosynthetic capacity is representedin the CANOAK simulations, there is good agreement with the eddy covariance data on the seasonal trends in carbon uptake. Removing the temporal trends in the simulations by using the early season maximum value of photosynthetic capacity over the entire growing season over estimates the annual carbon uptake by about 300 g C m?2 year?1– halfthe total estimated annual net ecosystem exchange. Alternatively, use of the mean value of photosynthetic capacity incorrectly simulates the seasonality in carbon uptake by the forest. In addition to changes related to leaf development and senescence, photosynthetic capacitydecreased in the middle and late summer, even when leaf nitrogenwas essentially constant. When only these middle and late summer reductions were neglected in the model simulations, CANOAK still overestimated the carbon uptake by an amount comparable to 25% ofthe total annual net ecosystem exchange.  相似文献   

8.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

9.
The effects of harvest on European forest net ecosystem exchange (NEE) of carbon and its photosynthetic and respiratory components (GPP (gross primary production) and TER (total ecosystem respiration)) were examined by comparing four pairs of mature/harvested sites in Europe via a combination of eddy covariance measurements and empirical modeling. Three of the comparisons represented high coniferous forestry (spruce in Britain, and pines in Finland and France), while a coppice‐with‐standard oak plantation was examined in Italy. While every comparison revealed that harvesting converted a mature forest carbon sink into a carbon source of similar magnitude, the mechanisms by which this occurred were very different according to species or management practice. In Britain, Finland, and France the annual sink (source) strength for mature (clear‐cut) stands was estimated at 496 (112), 138 (239), and 222 (225) g C m?2, respectively, with 381 (427) g C m?2 for the mature (coppiced) stand in Italy. In all three cases of high forestry in Britain, Finland, and France, clear‐cutting crippled the photosynthetic capacity of the ecosystem – with mature (clear‐cut) GPP of 1970 (988), 1010 (363), and 1600 (602) g C m?2– and also reduced ecosystem respiration to a lesser degree – TER of 1385 (1100), 839 (603), and 1415 (878) g C m?2, respectively. By contrast, harvesting of the coppice oak system provoked a burst in respiration – with mature (clear‐cut) TER estimated at 1160 (2220) gC m?2– which endured for the 3 years sampled postharvest. The harvest disturbance also reduced GPP in the coppice system – with mature (clear‐cut) GPP of 1600 (1420) g C m?2– but to a lesser extent than in the coniferous forests, and with near‐complete recovery within a few years. Understanding the effects of harvest on the carbon balance of European forest systems is a necessary step towards characterizing carbon exchange for timberlands on large scales.  相似文献   

10.
Ecological processing of leaf litter plays important roles in carbon dynamics of mangrove forests. Fate of leaf litter, that is, removal by crabs, microbial decomposition, and tidal export was quantified in two restored Kandelia obovata forests with ages of 24 years and 48 years, respectively, from December 2009 to November 2010. Crab abundance was also investigated to test the role of crabs in leaf litter processing. Daily leaf litter production was 1.064 ± 0.108 g C m?2 day?1 at the 24‐year forest and was 0.689 ± 0.040 g C m?2 day?1 at the 48‐year forest. Annual mean removal of leaf litter by crabs was lower at the 24‐year forest than at the 48‐year forest (0.177 ± 0.046 g C m?2 day?1 vs. 0.220 ± 0.050 g C m?2 day?1), due to a higher crab abundance at the older forest. Microbial decomposition and change in standing stock of leaf litter on the forest floor made a negligible contribution to the annual leaf litter production. Tidal exports of leaf litter were estimated as 0.875 ± 0.090 g C m?2 day?1 and 0.458 ± 0.086 g C m?2 day?1 at the 24‐year and 48‐year forests, respectively, accounting for 82.2% and 66.5% of their daily leaf litter production. Turnover rate of leaf litter was higher at the younger forest (1.7 ± 0.4 day?1) than the older forest (1.2 ± 0.3 day?1). Removal of leaf litter by crabs was higher in warm months while tidal export of leaf litter showed a much less apparent seasonal pattern. Spatial variations of crab removal and tidal export of leaf litter with forest zones were observed within each forest, while microbial decomposition of leaf litter was comparable among the different zones. These indicated that the ecosystem functions of restored mangrove forest could not reach a level equivalent to those of a mature forest even 24 years after restoration.  相似文献   

11.
In order to understand the influence of nitrogen (N) deposition on the key processes relevant to the carbon (C) balance in a bamboo plantation, a two-year field experiment involving the simulated deposition of N in a Pleioblastus amarus plantation was conducted in the rainy region of SW China. Four levels of N treatments: control (no N added), low-N (50 kg N ha?1 year?1), medium-N (150 kg N ha?1 year?1), and high-N (300 kg N ha?1 year?1) were set in the present study. The results showed that soil respiration followed a clear seasonal pattern, with the maximum rates in mid-summer and the minimum in late winter. The annual cumulative soil respiration was 585?±?43 g CO2-C m?2 year?1 in the control plots. Simulated N deposition significantly increased the mean annual soil respiration rate, fine root biomass, soil microbial biomass C (MBC), and N concentration in fine roots and fresh leaf litter. Soil respirations exhibited a positive exponential relationship with soil temperature, and a linear relationship with MBC. The net primary production (NPP) ranged from 10.95 to 15.01 Mg C ha?1 year?1 and was higher than the annual soil respiration (5.85 to 7.62 Mg C ha?1 year?1) in all treatments. Simulated N deposition increased the net ecosystem production (NEP), and there was a significant difference between the control and high N treatment NEP, whereas, the difference of NEP among control, low-N, and medium-N was not significant. Results suggest that N controlled the primary production in this bamboo plantation ecosystem. Simulated N deposition increased the C sequestration of the P. amarus plantation ecosystem through increasing the plant C pool, though CO2 emission through soil respiration was also enhanced.  相似文献   

12.
Seasonal changes and yearly gross canopy photosynthetic production were estimated for an 18 year old Japanese larch (Larix leptolepis) forest between 1982 and 1984. A canopy photosynthesis model was applied for the estimation, which took into account the effect of light interception by the non-photosynthetic organs. Seasonal changes in photosynthetic ability, amount of canopy leaf area and light environment within the canopy were also taken into account. Amount of leaf area was estimated by the leaf area growth of a single leaf. The change of light environment within the canopy during the growing season was estimated with a light penetration model and the leaf increment within the canopy. Canopy respiration and surplus production were calculated as seasonal and yearly values for the three years studied. Mean yearly estimates of canopy photosynthesis, canopy respiration and surplus production were 37, 13 and 23 tCO2 ha−1 year−1, respectively. Vertical trend, seasonal changes and yearly values of the estimates were analyzed in relation to environmental and stand factors.  相似文献   

13.
Heterotrophic soil microorganisms rely on carbon (C) allocated belowground in plant production, but belowground C allocation (BCA) by plants is a poorly quantified part of ecosystem C cycling, especially, in peat soil. We applied a C balance approach to quantify BCA in a mixed conifer-red maple (Acer rubrum) forest on deep peat soil. Direct measurements of CH4 and CO2 fluxes across the soil surface (soil respiration), production of fine and small plant roots, and aboveground litterfall were used to estimate respiration by roots, by mycorrhizae and by free-living soil microorganisms. Measurements occurred in two consecutive years. Soil respiration rates averaged 1.2 bm μmol m? 2 s? 1 for CO2 and 0.58 nmol m? 2 s? 1 for CH4 (371 to 403 g C m? 2 year? 1). Carbon in aboveground litter (144 g C m? 2 year? 1) was 84% greater than C in root production (78 g C m? 2 year? 1). Complementary in vitro assays located high rates of anaerobic microbial activity, including methanogenesis, in a dense layer of roots overlying the peat soil and in large-sized fragments within the peat matrix. Large-sized fragments were decomposing roots and aboveground leaf and twig litter, indicating that relatively fresh plant production supported most of the anaerobic microbial activity. Respiration by free-living soil microorganisms in deep peat accounted for, at most, 29 to 38 g C m? 2 year? 1. These data emphasize the close coupling between plant production, ecosystem-level C cycling and soil microbial ecology, which BCA can help reveal.  相似文献   

14.
1. Single‐station diel oxygen curves were used to monitor the oxygen metabolism of an intermittent, forested third‐order stream (Fuirosos) in the Mediterranean area, over a period of 22 months. Ecosystem respiration (ER) and gross primary production (GPP) were estimated and related to organic matter inputs and photosynthetically active radiation (PAR) in order to understand the effect of the riparian forest on stream metabolism. 2. Annual ER was 1690 g O2 m?2 year?1 and annual GPP was 275 g O2 m?2 year?1. Fuirosos was therefore a heterotrophic stream, with P : R ratios averaging 0.16. 3. GPP rates were relatively low, ranging from 0.05 to 1.9 g O2 m?2 day?1. The maximum values of GPP occurred during a few weeks in spring, and ended when the riparian canopy was fully closed. The phenology of the riparian vegetation was an important determinant of light availability, and consequently, of GPP. 4. On a daily scale, light and temperature were the most important factors governing the shape of photosynthesis–irradiance (P–I) curves. Several patterns could be generalised in the P–I relationships. Hysteresis‐type curves were characteristic of late autumn and winter. Light saturation responses (that occurred at irradiances higher than 90 μE m?2 s?1) were characteristic of early spring. Linear responses occurred during late spring, summer and early autumn when there was no evidence of light saturation. 5. Rates of ER were high when compared with analogous streams, ranging from 0.4 to 32 g O2 m?2 day?1. ER was highest in autumn 2001, when organic matter accumulations on the streambed were extremely high. By contrast, the higher discharge in autumn 2002 prevented these accumulations and caused lower ER. The Mediterranean climate, and in its effect the hydrological regime, were mainly responsible for the temporal variation in benthic organic matter, and consequently of ER.  相似文献   

15.
Eddy covariance was used to measure above-canopy exchanges of CO2 and water vapor at an operational plantation of hybrid poplar (variety ??Walker??) established on marginal agricultural land in east central Alberta, Canada. Winter ecosystem respiration (R e) rates were inferred from seasonal changes in the normalized respiration rate at 10°C (R 10) for the growing season and observations of soil CO2 concentration measured with solid-state probes. Over five consecutive growing seasons following planting, gross ecosystem production (GEP) increased each year, ranging from 21?g?C?m?2?y?1 in year 1 to 469?g?C?m?2?y?1 in year 5. During this period, the annual carbon balance shifted from a net source of greater than 330?g?C?m?2 in year 1 to approximately C-neutral in year 5. Total carbon (C) release over 5?years likely exceeded 630?g?C?m?2. Intra- and interannual variations in temperature and soil water availability greatly affected annual C balance each year. GEP and R e were particularly sensitive to temperature during spring and to soil water availability in summer: year 5 was notable because a cold spring and accumulating drought caused growth and carbon uptake to fall well below their potential. Annual evapotranspiration (ET) increased slightly with leaf area, from 281?mm in year 1 to 323?mm in year 4, but in year 5 it declined, while exceeding total precipitation (P). This trend of increasing annual ET/P suggests that annual GEP could become increasingly water-limited in years with below normal precipitation, as the plantation achieves maximum leaf area. Measured canopy albedos did not change appreciably over three winters, suggesting that estimates of increased radiative forcing resulting from afforestation in high latitudes could be exaggerated in regions where fast-growing deciduous plantations are managed on short (~20-year) rotations.  相似文献   

16.
Conversion of leaf litter to secondary production by a shredding caddis-fly   总被引:1,自引:0,他引:1  
Summary 1. The aim of this study was to estimate the amount of leaf litter ingested by the shredder caddis‐fly Sericostoma vittatum in a small stream in central Portugal. The study combined field data on population dynamics and laboratory experiments to determine the effect of temperature (9, 12, 15 and 18 °C), leaf species (Alnus glutinosa, Castanea sativa, Populus × canadensis and Quercus andegavensis) and animal mass on growth and consumption rates of the larvae. 2. Sericostoma vittatum had two overlapping cohorts, each of which needed about 1 year to complete development. Mean annual density and biomass were 115 individuals m?2 and 83 mg m?2, respectively. Secondary production was 0.44 g m?2 year?1 and production/biomass ratio was 4.9–5 year?1. 3. Consumption rates of larvae increased with temperature up to the optimal temperature for growth which varied between 13.7 and 16.7 °C depending on the diet. 4. Consumption rate was positively related to larval mass but growth rate was negatively related with larval mass. Larvae fed on A. glutinosa and P. × canadensis had higher consumption and growth rates than those fed on C. sativa or Q. andegavensis. 5. Annual leaf litter consumption by S. vittatum was estimated as 14–22 g m?2 depending on the diet. No relationship was observed between the amount of detritus consumed by the population of this caddis‐fly in the field and either water temperature, the stock of detritus on the stream bottom, or larval abundance. Instead, the temporal dynamics of leaf litter consumption by S. vittatum were controlled by its life history. 6. This study highlights the influence of factors such as animal size and water temperature on the invertebrate energetics. Models explaining how these variables affect invertebrate production efficiency may be very important for obtaining accurate estimates of the role of shredders in the energy flow across stream ecosystems.  相似文献   

17.
Coarse woody debris (CWD) is an important component of the forest carbon cycle, acting as a carbon pool and a source of CO2 in temperate forest ecosystems. We used a soda-lime closed-chamber method to measure CO2 efflux from downed CWD (diameter ≥5 cm) and to examine CWD respiration (R CWD) under field conditions over 1 year in a temperate secondary pioneer forest in Takayama forest. We also investigated tree mortality (input to the CWD pool) from the data obtained from the annual tree census, which commenced in 2000. We developed an exponential function of temperature to predict R CWD in each decay class (R 2 = 0.81–0.97). The sensitivity of R CWD to changing temperature, expressed as Q 10, ranged from 2.12 to 2.92 and was relatively high in decay class III. Annual C flux from CWD (F CWD) was extrapolated using continuous air temperature measurements and CWD necromass pools in the three decay classes. F CWD was 3.0 (class I), 17.8 (class II), and 13.7 g C m?2 year?1 (class III) and totaled 34 g C m?2 year?1 in 2009. Annual input to CWD averaged 77 g C m?2 year?1 from 2000 to 2009. The budget of the CWD pool in the Takayama forest, including tree mortality inputs and respiratory outputs, was 0.43 Mg C ha?1 year?1 (net C sink) owing to high tree mortality in the mature pioneer forest. The potential CWD sink is important for the carbon cycle in temperate successional forests.  相似文献   

18.
Three different approaches were used to calculate heterotrophic soil respiration (Rh) and soil carbon dynamics in an old-growth deciduous forest in central Germany. A root and mycorrhiza exclosure experiment in the field separated auto- and heterotrophic soil respiration. It was compared to modeled heterotrophic respiration resulting from two different approaches: a modular component model of soil respiration calculated autotrophic and heterotrophic soil respiration with litter, climate and canopy photosynthesis as input variables. It was calibrated by independent soil respiration measurements in the field. A second model was calibrated by incubation of soil samples from different soil layers in the laboratory. In this case, the annual sum of Rh was calculated by an empirical model including response curves to temperature and a soil moisture. The three approaches showed good accordance during spring and summer and when the annual sums of Rh calculated by the two models were compared. Average Rh for the years 2002–2006 were 436 g C m?2 year?1 (field model) and 417 g C m?2 year?1 (lab-model), respectively. Differences between the approaches revealed specific limitations of each method. The average carbon balance of the Hainich forest soil was estimated to be between 1 and 35 g C m?2 year?1 depending on the model used and the averaging period. A comparison with nighttime data from eddy covariance (EC) showed that EC data were lower than modelled soil respiration in many situations. We conclude that better filter methods for EC nighttime data have to be developed.  相似文献   

19.
Seasonal net carbon dioxide exchange of a beech forest with the atmosphere   总被引:10,自引:0,他引:10  
The seasonal carbon dioxide exchange of a beech forest of Central Italy was studied by means of the eddy covariance technique. Additional measurements of biomass respiration with cuvettes and relationship of carbon dioxide exchanges with temperature and light were used to interpolate missing data during the dormant and part of the growing season. The net ecosystem production of the forest equals 472 g C m?2 y?1 while the gross ecosystem production 1016 g C m?2 y?1 and respiration 544 g C m?2 y?1. These estimates are compared with the net primary production determined by direct biomass sampling which amounts to 802 g C m?2 y?1.  相似文献   

20.
We measured CO2 efflux from stems of two tropical wet forest trees, both found in the canopy, but with very different growth habits. The species were Simarouba amara, a fast-growing species associated with gaps in old-growth forest and abundant in secondary forest, and Minquartia guianensis, a slow-growing species tolerant of low-light conditions in old-growth forest. Per unit of bole surface, CO2 efflux averaged 1.24 mol m–2 s–1 for Simarouba and 0.83 mol m–2s–1 for Minquartia. CO2 efflux was highly correlated with annual wood production (r 2=0.65), but only weakly correlated with stem diameter (r 2=0.22). We also partitioned the CO2 efflux into the functional components of construction and maintenance respiration. Construction respiration was estimated from annual stem dry matter production and maintenance respiration by subtracting construction respiration from the instantaneous CO2 flux. Estimated maintenance respiration was linearly related to sapwood volume (39.6 mol m–3s–1 at 24.6° C, r 2=0.58), with no difference in the rate for the two species. Maintenance respiration per unit of sapwood volume for these tropical wet forest trees was roughly twice that of temperate conifers. A model combining construction and maintenance respiration estimated CO2 very well for these species (r 2=0.85). For our sample, maintenance respiration was 54% of the total CO2 efflux for Simarouba and 82% for Minquartia. For our sample, sapwood volume averaged 23% of stem volume when weighted by tree size, or 40% with no size weighting. Using these fractions, and a published estimate of aboveground dry-matter production, we estimate the annual cost of woody tissue respiration for primary forest at La Selva to be 220 or 350 g C m–2 year–1, depending on the assumed sapwood volume. These costs are estimated to be less than 13% of the gross production for the forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号