首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Cellular signaling by fibroblast growth factor receptors   总被引:20,自引:0,他引:20  
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.  相似文献   

2.
Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.  相似文献   

3.
Epidermal growth factor (EGF) injected into pregnant mice increased the frequency of cleft palate (CP) in cortisone-treated mouse fetuses. EGF alone produced proliferation and thickening of the epithelium of the palatal processes, but CP was not significantly increased over saline injected controls. Cortisone alone produced thinning of the palatal epithelium and caused CP in 61 percent of formed fetuses. The combination of EGF and cortisone treatment induced CP in 100 percent of formed fetuses; epithelial thickening still occurred with the combination treatment. Thus, EGF may be teratogenic under special circumstances. These observations suggest that the relative thickness of the palatal shelf epithelium may not be a critical factor in the fusion of the palatal shelves.  相似文献   

4.
Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling decoy receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.  相似文献   

5.
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.  相似文献   

6.
Fibroblast growth factors (FGFs) and their receptors are expressed in a variety of mammalian tissues, playing a role in development and cell proliferation. While analyzing human sperm motility, we found that sperm treated with endo-β-galactosidase (EBG), which specifically hydrolyzes poly-N-acetyllactosamine type glycans (polyLacs), enhanced motility. Mass spectrometry analysis revealed that sperm-associated polyLacs are heavily fucosylated, consistent with Lewis Y antigen. Immunohistochemistry of epididymis using an anti-Lewis Y antibody before and after EBG treatment suggested that polyLacs carrying the Lewis Y epitope are synthesized in epididymal epithelia and secreted to seminal fluid. EBG-treated sperm elevated cAMP levels and calcium influx, indicating activation of fibroblast growth factor signaling. Seminal fluid polyLacs bound to FGFs in vitro, and impaired FGF-mediated signaling in HEK293T cells.  相似文献   

7.
Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary complex SOS binds to FGF and FGFR and thereby increases FGF-FGFR affinity. SOS also interacts with the adjoining FGFR and thereby promotes protein-protein interactions that stabilize dimerization. This structural finding is supported by the inability of selectively desulfated SOS molecules to promote receptor dimerization. Thus, we propose that SOS potentiates FGF signaling by imitating the dual role of heparin in increasing FGF-FGFR affinity and promoting receptor dimerization. Hence, the dimeric FGF-FGFR-SOS structure substantiates the recently proposed "two-end" model, by which heparin induces FGF-FGFR dimerization. Moreover, the FGF-FGFR-SOS structure provides an attractive template for the development of easily synthesized SOS-related heparin agonists and antagonists that may hold therapeutic potential.  相似文献   

8.
9.
It has been recently established that Klotho coreceptors associate with fibroblast growth factor (FGF) receptor tyrosine kinases (FGFRs) to enable signaling by endocrine-acting FGFs. However, the molecular interactions leading to FGF-FGFR-Klotho ternary complex formation remain incompletely understood. Here, we show that in contrast to αKlotho, βKlotho binds its cognate endocrine FGF ligand (FGF19 or FGF21) and FGFR independently through two distinct binding sites. FGF19 and FGF21 use their respective C-terminal tails to bind to a common binding site on βKlotho. Importantly, we also show that Klotho coreceptors engage a conserved hydrophobic groove in the immunoglobulin-like domain III (D3) of the "c" splice isoform of FGFR. Intriguingly, this hydrophobic groove is also used by ligands of the paracrine-acting FGF8 subfamily for receptor binding. Based on this binding site overlap, we conclude that while Klotho coreceptors enhance binding affinity of FGFR for endocrine FGFs, they actively suppress binding of FGF8 subfamily ligands to FGFR.  相似文献   

10.
Recent evidence has implicated mutations of fibroblast growth factor receptors (FGF-R) in the pathogenesis of craniosynostotic syndromes. Cleft palate can be a component of such syndromes. The expression of FGF-R1 and FGF-R2 has been delineated in normally developing cranium, where they seem to regulate cellular differentiation and proliferation, respectively. The specific role of fibroblast growth factor signaling in mammalian palate development is unclear. The authors investigated the patterns of expression of FGF-R1 and FGF-R2 throughout mouse palatal development in the embryo. Time-dated CD-1 mouse heads (n = 135) were harvested at embryonic ages 12.5, 13.5, 14.5, 15.5, and 16.5 days (term gestation = 19.5 days), fixed in paraformaldehyde, embedded in paraffin, and sectioned. In addition, paired palatal shelves (n = 30) were isolated by means of microdissection from embryonic day--13.5 embryos, grown on Millipore filters in serum-free medium in vitro for 24, 48, 72, or 96 hours and processed for histological analysis. Immunohistochemical analysis for FGF-R1 and FGF-R2 was performed on the in vivo and in vitro specimens. FGF-R1 and FGF-R2 were found to be specifically expressed in the epithelium of the developing palatal shelves from the time of their outgrowth from the maxillary processes through completion of fusion in vivo and in vitro. Expression of both receptors was particularly strong during the phases of medial epithelial-medial epithelial contact between the individual shelves, through the formation of the medial epithelial seam, to the ultimate dissolution of the seam. Such a pattern of expression seems to implicate fibroblast growth factor signaling in the regulation of the critical phase of fusion of the bilateral shelves. The expression of both FGF-R1 and FGF-R2 in the lateral palatal mesenchyme, where such secondary structures as tooth primordia and bone begin to appear, also suggests a role for fibroblast growth factor signaling in the induction of ongoing differentiation and maturation of the palate after fusion. These data suggest that fibroblast growth factor signaling may play a role in the epithelial-mesenchymal interactions that dictate fusion and maturation of the developing palate. Furthermore, the data are consistent with the correlation of cleft palate formation with aberrant fibroblast growth factor signaling.  相似文献   

11.
We studied the different potentials of a secreted and a nonsecreted member of the fibroblast growth factor (FGF) family to induce autocrine growth stimulation in human adrenal cortex carcinoma cells (SW-13). These epithelial cells express basic FGF (bFGF) cell surface receptors, and picomolar concentrations of bFGF suffice to induce anchorage-independent growth. The requirement for exogenously added bFGF contrasts with the intracellular storage of biologically active bFGF in SW-13 cells greater than 10,000-fold in excess of the concentration needed to stimulate anchorage independent growth. To study whether the expression of a secreted FGF would alter the growth phenotype of these cells, we transfected them with an expression vector coding for the Kaposi-fgf (K-fgf) oncogene. In contrast to controls, K-fgf-transfected cells secrete significant amounts of biologically active K-fgf protein into the growth media, show up to 50-fold increased colony formation in soft agar, and grow into rapidly progressing, highly vascularized tumors in athymic nude mice. A reversible inhibition of the autocrine growth stimulation in vitro is brought about by the polyanionic compound suramin. We conclude that FGF has to be released from SW-13 cells to function fully as a growth stimulator in vitro and in vivo.  相似文献   

12.
13.
Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.  相似文献   

14.
Syndecan-4 is one of the principal heparan sulfate-carrying proteins on the cell surface. Unlike other members of syndecan family, syndecan-4 mediates phosphatidylinositol 4,5-bisphosphate 2 (PIP(2))-dependent PKC-alpha activation, and overexpression of syndecan-4 in vitro results in enhanced FGF2 signaling. The present study was designed to test the functional effect of increased syndecan-4 expression in endothelial cells in transgenic mice. Several transgenic mice lines expressing syndecan-4 cDNA under control of human endothelial nitric oxide (NO) synthase (eNOS) promoter were generated. Exogenous syndecan-4 was mainly expressed in the heart, brain, and lungs. In particular, the heart demonstrated the greatest increase in the ratio of transgenic-to-native syndecan-4 gene expression. Vessels from the eNOS-syndecan-4 mice demonstrated more pronounced vasodilation to FGF2 but not to VEGF-A(165), sodium nitroprusside, and A 23187 compared with wild-type mice. To elucidate the mechanism of this effect, we measured NO release from primary cardiac endothelial cells isolated from transgenic or wild-type adult mice. Cells from the eNOS-syndecan-4 transgenic mice had a significant increase in FGF2- and VEGF-A(165)-induced NO release compared with endothelial cells from the wild-type mice. However, the absolute magnitude of this increase was higher for FGF2 than VEGF-A(165). In conclusion, enhanced syndecan-4 expression in mouse cardiac endothelial cells results in preferential augmentation of FGF2 but not VEGF-A(165)-induced NO release.  相似文献   

15.
Monoclonal antibodies (McAbs) were developed that identify the complete (1-146 aa) and the NH2-terminal truncated (des 1-15) form of bovine basic fibroblast growth factor (bFGF). Four McAbs, designated McAbs 6, 8, 38, and 42, bind the complete form of bFGF found in bovine pituitary, brain, and adrenal gland. One of these McAbs, McAbs 42, also binds to the des 1-15 aa form of bFGF found in bovine adrenal gland, kidney, and corpus luteum. None of the McAbs binds bovine-brain-derived acidic FGF (aFGF). McAbs 6, 8, and 38 recognized the same epitope located within the first ten residues of the NH2-terminal of complete bFGF. McAb 42 recognizes a "core" epitope found on both the complete and des 1-15 aa bFGFs. The McAbs are murine IgGs with affinity constants of 10(7)-10(8) liter/M for bovine-pituitary-derived bFGF. McAbs 8 and 42 have been used in a two-site ELISA to detect the complete form of bFGF. The ELISA is sensitive to 38.5 fmole/well of bFGF and is not affected by the presence of calf serum or bovine-brain-derived aFGF. These McAbs should be useful in distinguishing the native and des 1-15 aa forms of bFGF from each other, and from aFGF and other growth factors.  相似文献   

16.
Activation of the fibroblast growth factor (FGF) receptor 3 (FGFR3) has been linked to the development of human cancers by mechanisms that are not well understood. The MUC1 oncoprotein is aberrantly overexpressed by certain hematologic malignancies and most human carcinomas. The present studies show that MUC1 associates with FGFR3. Stimulation of cells with FGF1 increased the interaction between MUC1 and FGFR3. FGF1 stimulation also induced c-Src-dependent tyrosine phosphorylation of the MUC1 cytoplasmic domain on a YEKV motif. FGF1-induced tyrosine phosphorylation of MUC1 was associated with increased binding of MUC1 to beta-catenin and targeting of MUC1 and beta-catenin to the nucleus. FGF1 also induced binding of MUC1 to the heat shock protein 90 (HSP90) chaperone by a mechanism dependent on phosphorylation of the YEKV motif. Notably, beta-catenin and HSP90 compete for binding to the MUC1 cytoplasmic domain, indicating that MUC1 forms mutually exclusive complexes with these proteins. The results also show that inhibition of HSP90 with geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin attenuates FGF1-induced binding of MUC1 to HSP90 and targeting of MUC1 to the mitochondrial outer membrane. These findings indicate that FGF1 induces phosphorylation of MUC1 on YEKV and thereby activates two distinct pathways: (a) nuclear localization of MUC1 and beta-catenin and (b) delivery of MUC1 to mitochondria by HSP90.  相似文献   

17.
Fibroblast growth factors (FGF) are secreted molecules which function through the activation of specific tyrosine kinases receptors, the FGF receptors that transduce the signal by activating different pathways including the Ras/MAP kinase and the phospholipase-C gamma pathways. FGFs are involved in the regulation of many developmental processes including patterning, morphogenesis, differentiation, cell proliferation or migration. Such a diverse set of activities requires a tight control of the transduction signal which is achieved through the induction of different feedback inhibitors such as the Sproutys, Sef and MAP kinase phosphatase 3 which are responsible for the attenuation of FGF signals, limiting FGF activities in time and space.  相似文献   

18.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

19.
Wang Y  Dai Y  Li X  Chen CY  Li W  Yu Z 《Acta biologica Hungarica》2011,62(2):142-150
The effect of all-trans retinoic acid (atRA) on palatal fusion and the underlying mechanisms were investigated using organ culture. Compared with control group, the atRA-treated group (1 μM and 5 μM) had more medial edge epithelium (ME) remaining within the midline epithelial seam (MES). At 10 μM atRA, the opposing shelves were not in contact at the culture end (72 h). Cell death detection by TUNEL and laminin immunohistochemistry demonstrated that atRA (5 μM) induced apoptosis in mesenchyme and inhibited degradation of basal lamina within MES. Notably, migration and apoptosis of ME cells and degradation of basal lamina within MES markedly represented vehicle control palatal shelves in culture. Additionally, apoptosis was not detected in mesenchyme of control palatal shelves. Immunoblotting analysis revealed that Smad2 and Smad3 were endogenously activated and expression of Smad7 was inhibited during the fusion process. In contrast, atRA treatment abrogated phosphorylation of Smad2 and Smad3 and inducible expression of Smad7 in ME. From these data, it is assumed that inhibition of Smad pathway by atRA in ME may play a critical role in abrogation of the ME cell apoptosis and degradation of the basal laminin, which might contribute to failure of palatal fusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号