首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
We have investigated the ability of dexamethasone to regulate interleukin-1beta (IL-1beta)-induced gene expression, histone acetyltransferase (HAT) and histone deacetylase (HDAC) activity. Low concentrations of dexamethasone (10(-10) M) repress IL-1beta-stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) expression and fail to stimulate secretory leukocyte proteinase inhibitor expression. Dexamethasone (10(-7) M) and IL-1beta (1 ng/ml) both stimulated HAT activity but showed a different pattern of histone H4 acetylation. Dexamethasone targeted lysines K5 and K16, whereas IL-1beta targeted K8 and K12. Low concentrations of dexamethasone (10(-10) M), which do not transactivate, repressed IL-1beta-stimulated K8 and K12 acetylation. Using chromatin immunoprecipitation assays, we show that dexamethasone inhibits IL-1beta-enhanced acetylated K8-associated GM-CSF promoter enrichment in a concentration-dependent manner. Neither IL-1beta nor dexamethasone elicited any GM-CSF promoter association at acetylated K5 residues. Furthermore, we show that GR acts both as a direct inhibitor of CREB binding protein (CBP)-associated HAT activity and also by recruiting HDAC2 to the p65-CBP HAT complex. This action does not involve de novo synthesis of HDAC protein or altered expression of CBP or p300/CBP-associated factor. This mechanism for glucocorticoid repression is novel and establishes that inhibition of histone acetylation is an additional level of control of inflammatory gene expression. This further suggests that pharmacological manipulation of of specific histone acetylation status is a potentially useful approach for the treatment of inflammatory diseases.  相似文献   

11.
12.
13.
Tat-controlled protein acetylation   总被引:3,自引:0,他引:3  
  相似文献   

14.
15.
Accumulating evidence suggests that Pax5 plays essential roles in B cell lineage commitment. However, molecular mechanisms of B cell-specific expression of Pax5 are not fully understood. Here, we applied insertional chromatin immunoprecipitation (iChIP) combined with stable isotope labeling using amino acids in cell culture (SILAC) (iChIP-SILAC) to direct identification of proteins interacting with the promoter region of the endogenous single-copy chicken Pax5 gene. By comparing B cells with macrophage-like cells trans-differentiated by ectopic expression of C/EBPβ, iChIP-SILAC detected B cell-specific interaction of a nuclear protein, Thy28/Thyn1, with the Pax5 1A promoter. Trans-differentiation of B cells into macrophage-like cells caused down-regulation of Thy28 expression. Loss-of-function of Thy28 induced decrease in Pax5 expression and recruitment of myosin-9 (MYH9), one of Thy28-interacting proteins, to the Pax5 1A promoter. Loss-of-function of MYH9 also induced decrease in Pax5 expression. Thus, our analysis revealed that Thy28 is functionally required for B cell-specific expression of Pax5 via recruitment of MYH9 to the Pax5 locus in chicken B cells.  相似文献   

16.
17.
18.
19.
20.
The recent structure and associated biochemical studies of the metazoan-specific p300/CBP and fungal-specific Rtt109 histone acetyltransferases (HATs) have provided new insights into the ancestral relationship between HATs and their functions. These studies point to a common HAT ancester that has evolved around a common structural framework to form HATs with divergent catalytic and substrate-binding properties. These studies also point to the importance of regulatory loops within HATs and autoacetylation in HAT function. Implications for future studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号