首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is associated with insulin resistance and the resulting hyperinsulinemia has been attributed to an increase of insulin secretion and a reduction of insulin clearance. The present study was intended to further characterize the relative contribution of secretion and clearance especially in the postprandial state. In relation to WHO body weight classes 291 subjects were divided in 5 subgroups Basal insulin concentrations rose stepwise and significantly with increasing BMI. This was paralleled by C-peptide concentrations and insulin secretion, while the reduction of insulin clearance was less stringent in relation to BMI. Basal glucose was unchanged in the BMI25 group and 8% higher in the obese groups (BMI 30, 35, 40) compared to normal weight (NW). Although postprandial insulin concentrations were significantly higher in the overweight and obese groups compared to NW the correlation was not as tight as in the basal state. Furthermore, the present data demonstrate for the first time that insulin secretion only increased in the overweight group without further augmentation in the obese groups. Further hyperinsulinemia of the latter was due to weight-dependent reduction of insulin clearance. The postprandial glucose response was 38–82% higher with increasing weight compared to NW. In summary basal hyperinsulinemia is mainly due to weight related increase of insulin secretion with moderate contribution of reduced insulin clearance. Postprandially, hyperinsulinemia of overweight is predominantly due to secretion while further postprandial hyperinsulinemia of obese subjects is mainly due to reduced clearance. Thus, postprandial insulin secretion cannot respond adequately to the challenge of weight-dependent insulin resistance already in non-diabetic obese subjects.  相似文献   

2.
Plasma glucose, insulin, and C-peptide concentrations were determined in response to graded infusions of glucose, and insulin secretion rates were calculated over each sampling period. Measurements were also made of insulin clearance, resistance to insulin-mediated glucose, uptake, and the plasma glucose, insulin, and C-peptide concentrations at hourly intervals from 8:00 AM to 4:00 PM in response to breakfast and lunch. Plasma glucose, insulin, and C-peptide concentrations were significantly (P < 0.01) higher in obese women in response to the graded intravenous glucose infusion, associated with a 40% (P < 0.005) greater insulin secretory response. Degree of insulin resistance correlated positively (P < 0.05) with the increase in insulin secretion rate in both nonobese (r = 0.52) and obese (r = 0.58) groups and inversely (P < 0.05) with the decrease in insulin clearance in obese (r = -0.46) and nonobese (r = -0.39) individuals. Weight loss was associated with significantly lower plasma glucose, insulin, and C-peptide concentrations in response to graded glucose infusions and in day-long insulin concentrations. Neither insulin resistance nor the insulin secretory response changed after weight loss, whereas there was a significant increase in the rate of insulin clearance during the glucose infusion. It is concluded that 1) obesity is associated with a shift to the left in the glucose-stimulated insulin secretory dose-response curve as well as a decrease in insulin clearance and 2) changes in insulin secretion and insulin clearance in obese women are more a function of insulin resistance than obesity.  相似文献   

3.
Reduced insulin clearance has been shown to predict the development of type 2 diabetes. Recently, it has been suggested that plasma glucose concentrations ≥8.6 mmol/l (155 mg/dl) at 1 h during an oral glucose tolerance test (OGTT) can identify individuals at high risk for type 2 diabetes among those who have normal glucose tolerance (NGT 1 h-high). The aim of this study was to examine whether NGT 1 h-high have a decrease in insulin clearance, as compared with NGT individuals with 1-h post-load glucose <8.6 mmol/l (l (155 mg/dl, NGT 1 h-low). To this end, 438 non-diabetic White individuals were subjected to OGTT and euglycemic-hyperinsulinemic clamp to evaluate insulin clearance and insulin sensitivity. As compared with NGT 1 h-low individuals, NGT 1 h-high had significantly higher 1-h and 2-h post-load plasma glucose and 2-h insulin levels as well as higher fasting glucose and insulin levels. NGT 1 h-high exhibited also a significant decrease in both insulin sensitivity (P<0.0001) and insulin clearance (P = 0.006) after adjusting for age, gender, adiposity measures, and insulin sensitivity. The differences in insulin clearance remained significant after adjustment for fasting glucose (P = 0.02) in addition to gender, age, and BMI. In univariate analyses adjusted for gender and age, insulin clearance was inversely correlated with body weight, body mass index, waist, fat mass, 1-h and 2-h post-load glucose levels, fasting, 1-h and 2-h post-load insulin levels, and insulin-stimulated glucose disposal. In conclusion, our data show that NGT 1 h-high have a reduction in insulin clearance as compared with NGT 1 h-low individuals; this suggests that impaired insulin clearance may contribute to sustained fasting and post-meal hyperinsulinemia.  相似文献   

4.
The role of preserved beta-cell function in preventing ketoacidosis in type I insulin-dependent diabetes was assessed in eight patients with and seven patients without residual beta-cell function as determined from C-peptide concentrations. After 12 hours of insulin fatty-acid, and glycerol concentrations were all significantly higher in patients without beta-cell function than in those with residual secretion. Mean blood glucose concentrations reached 17.2 +/- SE of mean 1.3 mmol/l (310 +/- 23 mg/100 ml) in the first group compared with 8.8 +/- 1.4 mmol/l (159 +/- 25 mg/100 ml) in the second (P less than 0.01), while 3-hydroxybutyrate concentrations rose to 5.5 +/- mmol/l (57 +/- 5 mg/100 ml) and 1.4 +/- 0.3 mmol/l (15 +/- 3 mg/100 ml) in the two groups respectively (P less than 0.01). Individual mean C-peptide concentrations showed a significant inverse correlation with the final blood glucose values (r = -0.91; P less than 0.02). These findings strongly suggest that even minimal residual insulin secretion is important for metabolic wellbeing in diabetes and may prevent the development of severe ketoacidosis when insulin delivery is inadequate.  相似文献   

5.
To assess whether extrapancreatic effects of sulfonylureas in vivo are detectable in the absence of endogenous insulin secretion, insulin sensitivity was determined in six insulin-deficient type 1-diabetic subjects. Peripheral uptake and hepatic production of glucose and lipolysis were measured during hyperinsulinemia using the euglycemic clamp technique and 3-3H-glucose infusions twice, once during a period with glibornuride treatment (50 mg b.i.d.), and once without. Hepatic glucose production decreased in diabetic subjects during hyperinsulinemia (insulin infusion of 20 mU/m2 X min; plasma free insulin levels of 40 +/- 4 mU/l) from 2.9 +/- 0.6 mg/kg min to 0.2 +/- 0.1 mg/kg X min after 120 min, and plasma free fatty acid (FFA) concentrations decreased from 1.33 +/- 0.29 to 0.38 +/- 0.08 mmol/l. Hepatic production, peripheral uptake of glucose and plasma FFA concentrations before and during hyperinsulinemia were not influenced by pretreatment with glibornuride. Compared to 8 non-diabetic subjects, type 1-diabetics demonstrated a diminished effect of hyperinsulinemia on peripheral glucose clearance (2.4 +/- 0.04 vs 4.2 +/- 0.5 ml/kg X min, P less than 0.01), whereas hepatic glucose production and plasma FFA levels were similarly suppressed by insulin. The data indicate that sulfonylurea treatment did not improve the diminished insulin sensitivity of peripheral glucose clearance in type 1-diabetic subjects; insulin action on hepatic glucose production and lipolysis was unimpaired in diabetics and remained uninfluenced by glibornuride. Thus, extrapancreatic effects of sulfonylureas in vivo are dependent on the presence of functioning beta-cells.  相似文献   

6.
Insulin secretion and sensitivity in hyperthyroidism   总被引:1,自引:0,他引:1  
To examine the effect of hyperthyroidism on carbohydrate metabolism, we studied glucose-stimulated insulin secretion and glucose utilization in 8 subjects with Graves' disease before and after treatment for hyperthyroidism and 8 age-, sex- and weight-matched normal subjects. Subjects with Graves' disease had significant elevated serum levels of thyroxine (24.81 +/- 2.44 micrograms/dl, mean +/- SEM) and triiodothyronine (459 +/- 5.5 ng/dl, mean +/- SEM). Simultaneous measurement of plasma glucose, serum insulin and C-peptide levels during fasting and every 30 minutes up to 180 minutes after 75 g oral glucose loading was determined. In addition, plasma glucose, serum insulin and serum C-peptide were measured during euglycemic glucose clamp with insulin infusion of 40 mU/m2 min-1. Mean fasting plasma glucose (P less than 0.05, serum insulin (P less than 0.005) and serum C-peptide (P less than 0.005) levels were significantly higher in the hyperthyroid patients. After glucose loading, the plasma glucose (P less than 0.05), serum insulin (P less than 0.05) and C-peptide (P less than 0.05) responses were significantly higher in hyperthyroid patients at all times up to 180 minutes. During euglycemic clamp studies, the steady-state serum insulin levels were identical in the two groups. The glucose disposal rate was lower in hyperthyroid patients before treatment (P less than 0.01) than in normal subjects. After thyroid function had been normalized for 2 to 4 weeks, the glucose disposal rate increased significantly (P less than 0.05), but was still significantly lower than those of normal subjects (P less than 0.05). Our data show that patients with Graves' hyperthyroidism manifest glucose intolerance, hyperinsulinemia and insulin resistance.  相似文献   

7.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

8.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Since the C-peptide/insulin ratio is reduced after oral glucose ingestion, the incretin hormone gastric inhibitory polypeptide (GIP) has been assumed to decrease hepatic insulin extraction. It was the aim of the present study to evaluate the effects of GIP on insulin extraction. Seventy-eight healthy subjects (27 male, 51 female, 43+/-11 years) were subjected to (a). an oral glucose tolerance test and (b). an intravenous injection of 20 pmol GIP/kg body weight, with capillary and venous blood samples collected over 30 min for insulin, C-peptide and GIP (specific immunoassays). Following GIP administration, plasma concentrations of total and intact GIP reached to peak levels of 80+/-7 and 54+/-5 pmol/l, respectively (p<0.0001). The rise in insulin after oral glucose and after intravenous GIP administration significantly exceeded the rise in C-peptide (p<0.0001). Estimating insulin extraction from the total integrated insulin and C-peptide concentrations (AUCs), only the oral glucose load (p<0.0001), but not the intravenous GIP administration (p=0.18) significantly reduced insulin clearance. Therefore, insulin clearance is reduced after an oral glucose load. This effect does not appear to be mediated by GIP.  相似文献   

10.
To examine the effect of excess growth hormones on carbohydrate metabolism, we studied glucose-stimulated insulin secretion and glucose utilization in 6 patients with acromegaly and 6 age-, sex- and weight-matched normal subjects. The levels of plasma glucose and serum insulin were determined during fasting and every 30 min up to 180 min after 75 g of oral glucose loading. In addition, plasma glucose, serum insulin and serum C-peptide were measured during euglycemic glucose clamp with insulin infusion of 40 mU/m2,min-1. The acromegalic patients had significantly higher mean levels of fasting plasma glucose (p less than 0.05) and insulin (p less than 0.01). After glucose loading for 3 h, the acromegalic patients also had a higher incremental area under the curve of plasma glucose (p less than 0.05) and serum insulin (p less than 0.05). However, no significant difference in the fasting molar ratio of C-peptide/IRI was noted between these two groups. During euglycemic clamp studies, the steady-state serum insulin levels were identical between the two groups. The glucose disposal rate was lower in acromegalics than in normal subjects (p less than 0.01). The results demonstrated that glucose intolerance, hyperinsulinemia and insulin resistance are present in acromegalic patients.  相似文献   

11.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

12.
Adiponectin is a fat-derived hormone with insulin-sensitizing properties. In patients with type 2 diabetes plasma adiponectin levels are decreased. Since these patients are characterized by high plasma insulin and glucose concentrations, hyperinsulinemia and hyperglycemia could be responsible for the downregulation of adiponectin. Insulin decreases adiponectin levels in humans. The effect of hyperglycemia is unknown. To determine the selective effects of insulin, glucose, or their combination on plasma adiponectin, clamps were performed in six healthy males on four occasions in a crossover design: 1) lower insulinemic-euglycemic clamp (100 pmol/l insulin, 5 mmol/l glucose) (reference clamp); 2) hyperinsulinemic-euglycemic clamp (400 pmol/l insulin, 5 mmol/l glucose); 3) lower insulinemic-hyperglycemic clamp (100 pmol/l insulin, 12 mmol/l glucose); and 4) hyperinsulinemic-hyperglycemic clamp (400 pmol/l insulin, 12 mmol/l glucose). Adiponectin concentrations and high-molecular-weight (HMW)-to-total adiponectin ratio were measured at the start and end of the 6-h clamps. After the 6-h study period, total plasma adiponectin levels were significantly (P = 0.045) decreased by 0.63 microg/ml in the lower insulinemic-euglycemic clamp (clamp 1). In both euglycemic groups (clamps 1 and 2) adiponectin concentrations significantly declined (P = 0.016) over time by 0.56 microg/ml, whereas there was no change in both hyperglycemic groups (clamps 3 and 4) (P = 0.420). In none of the clamps did the ratio of HMW to total adiponectin change. We conclude that insulin suppresses plasma adiponectin levels already at a plasma insulin concentration of 100 pmol/l. Hyperglycemia prevents the suppressive effect of insulin. This suggests that, in contrast to glucose, insulin could be involved in the downregulation of plasma adiponectin in insulin-resistant patients.  相似文献   

13.
Many obese middle-aged rhesus monkeys (Macaca mulatta) spontaneously develop noninsulin dependent diabetes mellitus (NIDDM). Basal hyperinsulinemia and increased stimulated plasma insulin levels are associated with this obesity and precede the onset of overt diabetes. The present studies sought to determine the relative contributions of enhanced insulin secretion and of reduced insulin clearance to this early obesity-associated hyperinsulinemia. Direct simultaneous measurement of portal and jugular vein insulin levels in two normal monkeys showed a constant rate of hepatic insulin extraction of 56±3% over the range of peripheral insulin levels from 351±113 to 625±118 pmol/L. In 33 additional monkeys ranging from normal to diabetic, basal C-peptide levels were examined as an indicator of β-cell secretion and the molar ratio of plasma C-peptide to insulin (C/I ratio) under basal steady state conditions calculated as an index of hepatic insulin extraction. Well in advance of overt diabetes, there was a progressive decline of 67% in the apparent hepatic insulin extraction rate in association with increased obesity and plasma insulin levels. Basal insulin levels and hepatic insulin extraction returned toward normal in monkeys with impaired glucose tolerance and in those with overt diabetes. We conclude that reduced insulin disposal, probably due to reduced hepatic extraction of insulin, in addition to increased β-cell activity, contributes to the development of basal hyperinsulinemia in obese rhesus monkeys progressing toward NIDDM. In addition, in overt diabetes, normal hepatic insulin extraction in the presence of limited β-cell secretion may exacerbate the hypoinsulinemic state. (OBESITY RESEARCH 1993; 1:252–260)  相似文献   

14.
The effect of semisynthetic human insulin on hepatic glucose output, peripheral glucose clearance, plasma levels of C-Peptide, free fatty acids and amino acids was compared with purified pork insulin using the glucose clamp technique. 8 normal overnight-fasted subjects received intravenous infusions of either human or porcine insulin at 20 mU/m2.min(-1) during 120 min achieving plasma insulin levels of approximately equal to 50 mU/l. Plasma glucose levels were maintained at euglycaemia by variable rates of glucose infusion. Hepatic glucose production measured by continuous infusion of 3-(3) H-glucose was similarly suppressed by both insulins to rates near zero. The metabolic clearance rate of glucose increased during infusion of human insulin by 120%, C-peptide levels decreased by 41% and plasma FFA concentrations fell by 74%. The respective changes during infusion of pork insulin were similar, 118%, 48% and 72%. Both insulins decreased the plasma levels of branched-chain amino acids, tyrosine, phenylalanine, methionine, serine and histidine similarly. Thus, the results demonstrate that semisynthetic human and porcine insulin are aequipotent with respect to suppression of hepatic glucose output, stimulation of glucose clearance, inhibition of insulin secretion, lipolysis and proteolysis.  相似文献   

15.
Interactions between leptin and insulin have been shown previously, in vitro and in vivo. In this study, we evaluate the associations of leptin levels with insulin secretion and insulin sensitivity in type 2 diabetes. Fasting leptin levels, HbA 1c, glucose, insulin, C-peptide, intact and des-31,32-proinsulin were measured in 100 non-insulin-treated type 2 diabetic patients. Glucose, insulin and C-peptide were measured 2 hours after an oral glucose load. Insulin resistance and beta-cell function were calculated using HOMA. Leptin levels were found to be associated with all measures of beta-cell secretion: with fasting and 2 hours insulin and C-peptide, with intact and des-31,32-proinsulin concentrations, and with beta-cell secretion estimated with HOMA. This association was independent of age and body fat in women, but in men, associations with insulin and C-peptide weakened after controlling for fat mass, whereas those with intact and des-31,32-proinsulin disappeared. Fasting insulin and C-peptide levels were also significant in multiple regression analyses, besides gender and fat mass. Insulin resistance, as assessed by HOMA, was strongly correlated with leptin, also after correction for age and fat mass in both genders. We conclude that, besides fat mass and gender - the main determinants for leptin levels in type 2 diabetic subjects as in healthy subjects - insulin secretion and the degree of insulin resistance also seem to contribute significantly to leptin levels.  相似文献   

16.
The relationship between beta-endorphin(beta-EP)/beta-lipotropin(beta-LP) and insulin secretion in the basal state and after glucose challenge was studied in obese male Zucker rats and their lean littermates. Baseline plasma beta-EP/beta-LP concentrations were similar in the two groups of animals. Baseline plasma insulin and serum glucose concentrations were significantly higher in the obese animals. Following glucose challenge, the increase in plasma beta-EP/beta-LP concentrations was significantly lower in the obese animals than in their lean littermates. Opioid blockade with naloxone failed to alter the baseline hyperinsulinemia and hyperglycemia seen in the obese animals. The data suggest that the hyperinsulinemia in the obese Zucker rat is not due to endogenous hyperendorphinemia as shown in humans with polycystic ovary syndrome. The obese rats showed dissociation between glucose-stimulated plasma levels of beta-EP/beta-LP and insulin levels which may contribute to the hyperinsulinemia and insulin resistance in these animals.  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

18.
The secretion of insulin by the pancreas of the newborn rhesus monkey that had been made experimentally hyperinsulinemic in utero was studied in 18 animals. Chronic in utero hyperinsulinemia was produced by the continuous subcutaneous delivery of 4.75 units of insulin per day for 18 +/- 1 days. After delivery, the insulin-containing pump was removed to allow neonatal insulin levels to drop to normal levels. By 6.5 +/- 1.0 hr after pump removal, plasma glucose, insulin, and C-peptide immunoreactivity (CPIR) were comparable in the control and experimental animals. At that point 300 micrograms of glucagon/kg body weight was given iv to stimulate insulin secretion. After 30 min a significant elevation (expressed as the percentage of basal levels) in plasma glucose by 250%, insulin by 200%, and CPIR by 200% was observed in the control animals. In contrast, no changes in plasma insulin or CPIR concentrations occurred, with an attenuated glucose response that was only one-fifth of the control response, in the experimental animals. These results along with the observed lowered concentrations of CPIR in the plasma and insulin in the pancreas at birth can be interpreted as evidence that insulin is an inhibitor of its synthesis and secretion in utero and that this abnormal intrauterine environment causes changes that persist into extrauterine life.  相似文献   

19.
Impaired fasting glucose (IFG) represents risk of development of diabetes (DM) and its complications. We investigated insulin secretion and insulin sensitivity in 403 IFG subjects divided into three levels of 2-hour postchallenge glucose (2-h PG) to clarify the factors responsible in the development of glucose intolerance in Japanese IFG. Nearly 60% of the subjects at annual medical check-up with FPG of 6.1-7.0 mmol/l at the first screening were diagnosed by 75 g oral glucose tolerance test (OGTT) to have impaired glucose tolerance (IGT; FPG <7.0 mmol/l and 7.8 mmol/l <2-h PG <11.1 mmol/l) or DM (isolated postchallenge hyperglycemia (IPH); FPG <7.0 mmol/l and 11.1 mmol/l <2-h PG level). The primary factor in the decreased glucose tolerance was a decrease in early-phase insulin, with some contribution of increasing insulin resistance. In addition, IFG/IGT and IFG/IPH subjects showed a compensatory increase in basal insulin secretion sufficient to keep FPG levels within the non-diabetic range. IFG is composed of three different categories in basal, early-phase insulin secretion, and insulin sensitivity.  相似文献   

20.
Plasma clearance of endogenous and intravenously administered insulin was studied in three sibs with severe insulin resistance secondary to an affinity defect of their insulin receptors, and in five healthy controls. Intravenous infusion of somatostatin was used to inhibit the insulin secretion. 0.3 U of insulin/kg body weight was administered as an intravenous bolus. Plasma glucose, immunoreactive insulin and C-peptide were determined subsequently at constant intervals. We found a prolonged plasma half-life of insulin in the three patients, being 33.5 +/- 11.8 min vs 8.2 +/- 2.2 min in controls, P less than 0.002, but a normal half-life of C-peptide. The result indicates, that the plasma insulin clearance is predominantly mediated by intact insulin receptors. We conclude, that insulin has a prolonged half-life in all patients with insulin resistance secondary to an impaired receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号