首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The conformational parametersP k for each amino acid species (j=1–20) of sequential peptides in proteins are presented as the product ofP i,k , wherei is the number of the sequential residues in thekth conformational state (k=-helix,-sheet,-turn, or unordered structure). Since the average parameter for ann-residue segment is related to the average probability of finding the segment in the kth state, it becomes a geometric mean of (P k )av=(P i,k ) 1/n with amino acid residuei increasing from 1 ton. We then used ln(Pk)av to convert a multiplicative process to a summation, i.e., ln(P k ) av =(1/n)P i,k (i=1 ton) for ease of operation. However, this is unlike the popular Chou-Fasman algorithm, which has the flaw of using the arithmetic mean for relative probabilities. The Chou-Fasman algorithm happens to be close to our calculations in many cases mainly because the difference between theirP k and our InP k is nearly constant for about one-half of the 20 amino acids. When stronger conformation formers and breakers exist, the difference become larger and the prediction at the N- and C-terminal-helix or-sheet could differ. If the average conformational parameters of the overlapping segments of any two states are too close for a unique solution, our calculations could lead to a different prediction.  相似文献   

2.
We have analyzed 29 different published matrices of protein pairwise contact potentials (CPs) between amino acids derived from different sets of proteins, either crystallographic structures taken from the Protein Data Bank (PDB) or computer-generated decoys. Each of the CPs is similar to 1 of the 2 matrices derived in the work of Miyazawa and Jernigan (Proteins 1999;34:49-68). The CP matrices of the first class can be approximated with a correlation of order 0.9 by the formula e(ij) = h(i) + h(j), 1 相似文献   

3.
Prediction of the three-dimensional structure of human growth hormone   总被引:2,自引:0,他引:2  
F E Cohen  I D Kuntz 《Proteins》1987,2(2):162-166
In recent years, the protein-folding problem has attracted the attention of molecular biologists. Efforts have focused on developing heuristic and energy-based algorithms to predict the three-dimensional structure of a protein from its amino acid sequence. We have applied a series of heuristic algorithms to the sequence of human growth hormone. A family of five structures which are generically right-handed fourfold alpha-helical bundles are found from an investigation of approximately 10(8) structures. A plausible receptor binding site is suggested. Independent crystallographic analysis confirms some aspects of these predictions. These methods only deal with the "core" structure, and conformations of many residues are not defined. Further work is required to identify a unique set of coordinates and to clarify the topological alternative available to alpha-helical proteins.  相似文献   

4.
Physical principles determining the protein structure and protein folding are reviewed: (i) the molecular theory of protein secondary structure and the method of its prediction based on this theory; (ii) the existence of a limited set of thermodynamically favourable folding patterns of α- and β-regions in a compact globule which does not depend on the details of the amino acid sequence; (iii) the moderns approaches to the prediction of the folding patterns of α- and β-regions in concrete proteins; (iv) experimental approaches to the mechanism of protein folding. The review reflects theoretical and experimental works of the author and his collaborators as well as those of other groups.  相似文献   

5.
蛋白质结构预测的理论方法及阶段   总被引:2,自引:0,他引:2  
孙侠  殷志祥 《生物学杂志》2007,24(1):16-17,15
一直以来,蛋白质结构预测都是人们研究的焦点,综述了蛋白质结构预测的几种理论方法和不同阶段。  相似文献   

6.
Protein structure prediction techniques proceed in two steps, namely the generation of many structural models for the protein of interest, followed by an evaluation of all these models to identify those that are native‐like. In theory, the second step is easy, as native structures correspond to minima of their free energy surfaces. It is well known however that the situation is more complicated as the current force fields used for molecular simulations fail to recognize native states from misfolded structures. In an attempt to solve this problem, we follow an alternate approach and derive a new potential from geometric knowledge extracted from native and misfolded conformers of protein structures. This new potential, Metric Protein Potential (MPP), has two main features that are key to its success. Firstly, it is composite in that it includes local and nonlocal geometric information on proteins. At the short range level, it captures and quantifies the mapping between the sequences and structures of short (7‐mer) fragments of protein backbones through the introduction of a new local energy term. The local energy term is then augmented with a nonlocal residue‐based pairwise potential, and a solvent potential. Secondly, it is optimized to yield a maximized correlation between the energy of a structural model and its root mean square (RMS) to the native structure of the corresponding protein. We have shown that MPP yields high correlation values between RMS and energy and that it is able to retrieve the native structure of a protein from a set of high‐resolution decoys. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.  相似文献   

8.
We have improved the original Rosetta centroid/backbone decoy set by increasing the number of proteins and frequency of near native models and by building on sidechains and minimizing clashes. The new set consists of 1,400 model structures for 78 different and diverse protein targets and provides a challenging set for the testing and evaluation of scoring functions. We evaluated the extent to which a variety of all-atom energy functions could identify the native and close-to-native structures in the new decoy sets. Of various implicit solvent models, we found that a solvent-accessible surface area-based solvation provided the best enrichment and discrimination of close-to-native decoys. The combination of this solvation treatment with Lennard Jones terms and the original Rosetta energy provided better enrichment and discrimination than any of the individual terms. The results also highlight the differences in accuracy of NMR and X-ray crystal structures: a large energy gap was observed between native and non-native conformations for X-ray structures but not for NMR structures.  相似文献   

9.
Babor M  Gerzon S  Raveh B  Sobolev V  Edelman M 《Proteins》2008,70(1):208-217
Metal ions are crucial for protein function. They participate in enzyme catalysis, play regulatory roles, and help maintain protein structure. Current tools for predicting metal-protein interactions are based on proteins crystallized with their metal ions present (holo forms). However, a majority of resolved structures are free of metal ions (apo forms). Moreover, metal binding is a dynamic process, often involving conformational rearrangement of the binding pocket. Thus, effective predictions need to be based on the structure of the apo state. Here, we report an approach that identifies transition metal-binding sites in apo forms with a resulting selectivity >95%. Applying the approach to apo forms in the Protein Data Bank and structural genomics initiative identifies a large number of previously unknown, putative metal-binding sites, and their amino acid residues, in some cases providing a first clue to the function of the protein.  相似文献   

10.
Computational methods in protein structure prediction   总被引:1,自引:0,他引:1  
This review presents the advances in protein structure prediction from the computational methods perspective. The approaches are classified into four major categories: comparative modeling, fold recognition, first principles methods that employ database information, and first principles methods without database information. Important advances along with current limitations and challenges are presented.  相似文献   

11.
The tertiary structure of the alpha-subunit of tryptophan synthase was proposed using a combination of experimental data and computational methods. The vacuum-ultraviolet circular dichroism spectrum was used to assign the protein to the alpha/beta-class of supersecondary structures. The two-domain structure of the alpha-subunit (Miles et al.: Biochemistry 21:2586, 1982; Beasty and Matthews: Biochemistry 24:3547, 1985) eliminated consideration of a barrel structure and focused attention on a beta-sheet structure. An algorithm (Cohen et al.: Biochemistry 22:4894, 1983) was used to generate a secondary structure prediction that was consistent with the sequence data of the alpha-subunit from five species. Three potential secondary structures were then packed into tertiary structures using other algorithms. The assumption of nearest neighbors from second-site revertant data eliminated 97% of the possible tertiary structures; consideration of conserved hydrophobic packing regions on the beta-sheet eliminated all but one structure. The native structure is predicted to have a parallel beta-sheet flanked on both sides by alpha-helices, and is consistent with the available data on chemical cross-linking, chemical modification, and limited proteolysis. In addition, an active site region containing appropriate residues could be identified as well as an interface for beta 2-subunit association. The ability of experimental data to facilitate the prediction of protein structure is discussed.  相似文献   

12.
It has been known even since relatively few structures had been solved that longer protein chains often contain multiple domains, which may fold separately and play the role of reusable functional modules found in many contexts. In many structural biology tasks, in particular structure prediction, it is of great use to be able to identify domains within the structure and analyze these regions separately. However, when using sequence data alone this task has proven exceptionally difficult, with relatively little improvement over the naive method of choosing boundaries based on size distributions of observed domains. The recent significant improvement in contact prediction provides a new source of information for domain prediction. We test several methods for using this information including a kernel smoothing‐based approach and methods based on building alpha‐carbon models and compare performance with a length‐based predictor, a homology search method and four published sequence‐based predictors: DOMCUT, DomPRO, DLP‐SVM, and SCOOBY‐DOmain. We show that the kernel‐smoothing method is significantly better than the other ab initio predictors when both single‐domain and multidomain targets are considered and is not significantly different to the homology‐based method. Considering only multidomain targets the kernel‐smoothing method outperforms all of the published methods except DLP‐SVM. The kernel smoothing method therefore represents a potentially useful improvement to ab initio domain prediction. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Tom Defay  Fred E. Cohen 《Proteins》1995,23(3):431-445
The results of a protein structure prediction contest are reviewed. Twelve different groups entered predictions on 14 proteins of known sequence whose structures had been determined but not yet disseminated to the scientific community. Thus, these represent true tests of the current state of structure prediction methodologies. From this work, it is clear that accurate tertiary structure prediction is not yet possible. However, protein fold and motif prediction are possible when the motif is recognizably similar to another known structure. Internal symmetry and the information inherent in an aligned family of homologous sequences facilitate predictive efforts. Novel folds remain a major challenge for prediction efforts. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
目前评价蛋白质二级结构预测方法主要考虑预测准确率,并没有充分考虑方法自身参数对方法的影响。本文提出一种新型评价方法,将内在评价与外在评价相结合评价预测方法的优劣。以基于混合并行遗传算法的蛋白质二级结构预测方法为例,通过内在评价,合理选取内在参数——切片长度和组内类别数,有效提高预测准确率,同时,通过外在评价,与其他基于随机算法的蛋白质二级结构预测算法比较和与CASP所提供的结论比较,说明了方法的有效性与正确性,以此验证内在评价和外在评价的客观性、公正性和全面性。  相似文献   

16.
Methods for predicting protein function from structure are becoming more important as the rate at which structures are solved increases more rapidly than experimental knowledge. As a result, protein structures now frequently lack functional annotations. The majority of methods for predicting protein function are reliant upon identifying a similar protein and transferring its annotations to the query protein. This method fails when a similar protein cannot be identified, or when any similar proteins identified also lack reliable annotations. Here, we describe a method that can assign function from structure without the use of algorithms reliant upon alignments. Using simple attributes that can be calculated from any crystal structure, such as secondary structure content, amino acid propensities, surface properties and ligands, we describe each enzyme in a non-redundant set. The set is split according to Enzyme Classification (EC) number. We combine the predictions of one-class versus one-class support vector machine models to make overall assignments of EC number to an accuracy of 35% with the top-ranked prediction, rising to 60% accuracy with the top two ranks. In doing so we demonstrate the utility of simple structural attributes in protein function prediction and shed light on the link between structure and function. We apply our methods to predict the function of every currently unclassified protein in the Protein Data Bank.  相似文献   

17.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   

18.
The elucidation of the domain content of a given protein sequence in the absence of determined structure or significant sequence homology to known domains is an important problem in structural biology. Here we address how successfully the delineation of continuous domains can be accomplished in the absence of sequence homology using simple baseline methods, an existing prediction algorithm (Domain Guess by Size), and a newly developed method (DomSSEA). The study was undertaken with a view to measuring the usefulness of these prediction methods in terms of their application to fully automatic domain assignment. Thus, the sensitivity of each domain assignment method was measured by calculating the number of correctly assigned top scoring predictions. We have implemented a new continuous domain identification method using the alignment of predicted secondary structures of target sequences against observed secondary structures of chains with known domain boundaries as assigned by Class Architecture Topology Homology (CATH). Taking top predictions only, the success rate of the method in correctly assigning domain number to the representative chain set is 73.3%. The top prediction for domain number and location of domain boundaries was correct for 24% of the multidomain set (+/-20 residues). These results have been put into context in relation to the results obtained from the other prediction methods assessed.  相似文献   

19.
Contact order and ab initio protein structure prediction   总被引:1,自引:0,他引:1       下载免费PDF全文
Although much of the motivation for experimental studies of protein folding is to obtain insights for improving protein structure prediction, there has been relatively little connection between experimental protein folding studies and computational structural prediction work in recent years. In the present study, we show that the relationship between protein folding rates and the contact order (CO) of the native structure has implications for ab initio protein structure prediction. Rosetta ab initio folding simulations produce a dearth of high CO structures and an excess of low CO structures, as expected if the computer simulations mimic to some extent the actual folding process. Consistent with this, the majority of failures in ab initio prediction in the CASP4 (critical assessment of structure prediction) experiment involved high CO structures likely to fold much more slowly than the lower CO structures for which reasonable predictions were made. This bias against high CO structures can be partially alleviated by performing large numbers of additional simulations, selecting out the higher CO structures, and eliminating the very low CO structures; this leads to a modest improvement in prediction quality. More significant improvements in predictions for proteins with complex topologies may be possible following significant increases in high-performance computing power, which will be required for thoroughly sampling high CO conformations (high CO proteins can take six orders of magnitude longer to fold than low CO proteins). Importantly for such a strategy, simulations performed for high CO structures converge much less strongly than those for low CO structures, and hence, lack of simulation convergence can indicate the need for improved sampling of high CO conformations. The parallels between Rosetta simulations and folding in vivo may extend to misfolding: The very low CO structures that accumulate in Rosetta simulations consist primarily of local up-down beta-sheets that may resemble precursors to amyloid formation.  相似文献   

20.
NMR offers the possibility of accurate secondary structure for proteins that would be too large for structure determination. In the absence of an X-ray crystal structure, this information should be useful as an adjunct to protein fold recognition methods based on low resolution force fields. The value of this information has been tested by adding varying amounts of artificial secondary structure data and threading a sequence through a library of candidate folds. Using a literature test set, the threading method alone has only a one-third chance of producing a correct answer among the top ten guesses. With realistic secondary structure information, one can expect a 60-80% chance of finding a homologous structure. The method has then been applied to examples with published estimates of secondary structure. This implementation is completely independent of sequence homology, and sequences are optimally aligned to candidate structures with gaps and insertions allowed. Unlike work using predicted secondary structure, we test the effect of differing amounts of relatively reliable data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号