首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J H Pratt  J A McAteer 《Life sciences》1989,44(26):2089-2095
Beta-adrenergic agonists have been shown to stimulate aldosterone secretion. Angiotensin II (AII) is one of the important stimuli of aldosterone secretion; conceivably beta-adrenergic influences affect the stimulatory potential of AII. Using cultured rat adrenal capsules, we found that 10(-7) M epinephrine and 10(-7) M isoproterenol enhanced 10(-7) M AII-stimulated aldosterone production. Propranolol (10(-7) M) completely inhibited the ability of epinephrine to augment the stimulatory actions of AII. In conclusion, beta-adrenergic agonists promote stimulation of aldosterone secretion by AII.  相似文献   

2.
In humans with diabetes mellitus or in individuals given infusions of insulin or insulin plus glucose, plasma aldosterone levels have been reported to be suppressed. Whether insulin has a direct effect to suppress aldosterone secretion by the adrenal gland has not been established. The effect of insulin on glucose-induced inhibition of angiotensin II-stimulated aldosterone secretion was examined. The effect of glucose and insulin plus glucose on angiotensin II-stimulated aldosterone secretion was examined in isolated perfused canine adrenal glands. In the absence of insulin, 15.6 mM glucose decreased angiotensin II-stimulated aldosterone secretion by 35 +/- 7%, while in the presence of insulin the same glucose concentration had no significant effect on angiotensin II-stimulated aldosterone secretion. In contrast, insulin had no effect on NaCl-induced inhibition of angiotensin II-stimulated aldosterone secretion. Neither insulin alone nor saline vehicle affected angiotensin II-stimulated aldosterone secretion. These results (1) demonstrate that insulin can prevent inhibition of glucose-induced angiotensin II-stimulated aldosterone secretion, possibly by preventing a glucose-induced decrease in cell volume, and (2) suggest that the suppressed plasma level of aldosterone found in individuals with diabetes mellitus may in part be due to the direct effects of hyperglycemia on the adrenal gland secretion of aldosterone.  相似文献   

3.
The Ca2+ sensor calmodulin (CaM) regulates numerous proteins involved in G protein-coupled receptor (GPCR) signaling. CaM binds directly to some GPCRs, including the dopamine D2 receptor. We confirmed that the third intracellular loop of the D2 receptor is a direct contact point for CaM binding using coimmunoprecipitation and a polyHis pull-down assay, and we determined that the D2-like receptor agonist 7-OH-DPAT increased the colocalization of the D2 receptor and endogenous CaM in both 293 cells and in primary neostriatal cultures. The N-terminal three or four residues of D2-IC3 were required for the binding of CaM; mutation of three of these residues in the full-length receptor (I210C/K211C/I212C) decreased the coprecipitation of the D2 receptor and CaM and also significantly decreased D2 receptor signaling, without altering the coupling of the receptor to G proteins. Taken together, these findings suggest that binding of CaM to the dopamine D2 receptor enhances D2 receptor signaling.  相似文献   

4.
The postulation that dopamine (DA) may tonically inhibit aldosterone (ALDO) secretion has arisen from the finding that metoclopramide, a non-selective DA receptor antagonist with prominent non-dopaminergic actions, stimulates ALDO secretion. Experiments were performed to determine: (a.) the ability of several non-specific and subtype-specific DA receptor antagonists to stimulate ALDO secretion, (b.) the subtype DA receptor involved in regulating ALDO secretion, and (c.) if ALDO responses were associated with changes in plasma Na+(pNa), K+(pK), or osmolality (pOsm). Blood samples were withdrawn from carotid arterial catheters in conscious, fasted male Sprague-Dawley rats before and following intra-arterial administration of lactated Ringer's placebo, furosemide (10 mg/kg), or one of several DA receptor antagonists. Furosemide stimulated ALDO, decreased pK, and left pNa and pOsm unchanged. The non-selective DA receptor antagonists metoclopramide (0.2, 0.6 mg/kg), rs-sulpiride (0.2 mg/kg), and haloperidol (0.1 mg/kg), and the DA-2 receptor antagonists domperidone (0.1 mg/kg) and s-sulpiride (0.1 mg/kg) each stimulated ALDO, and left pNa, pK, and pOsm unchanged. Conversely, the DA-1 receptor antagonists SCH 23390 (0.03, 0.1 mg/kg) and r-sulpiride (0.1 mg/kg) failed to stimulate ALDO, and left pNa, pK, and pOsm unaltered. These studies suggest that ALDO secretion in rats is modulated by a mechanism involving DA-2, but not DA-1 subtype receptors, and that the ALDO responses to DA receptor antagonism are independent of changes in pNa, pK, and pOsm.  相似文献   

5.
6.
7.
When angiotensin II stimulates aldosterone secretion, it causes a rapid but transient mobilization of calcium from an intracellular pool and a sustained increase in the influx of calcium in adrenal glomerulosa cells. The present studies were undertaken to determine the respective roles of the two angiotensin II-induced changes in cellular calcium metabolism in modulating events during the sustained phase of cellular response which is thought to be mediated by the C-kinase branch of the calcium messenger system. The sustained response to angiotensin II is only 50% of maximal in cells pretreated with dantrolene in a concentration sufficient to inhibit the angiotensin II-induced mobilization of intracellular calcium. Also, if A23187 is added to cells simultaneously with 1-oleoyl-2-acetylglycerol (OAG), the aldosterone secretory response is similar to that seen after angiotensin II. However, if A23187 is added first and the transient aldosterone secretory response allowed to decay, and OAG then added, the sustained aldosterone secretory response is only 45-50% of maximal. Addition of the calcium channel agonist, BAY K 8644, with OAG leads to an aldosterone secretory response which is only 50% of maximal, but if upon addition of OAG and BAY K 8644 the cells are also exposed for 5 min to media containing 8 mM K+, then the sustained secretory response is maximal. These data imply that the initial transient rise in the [Ca2+] of the cell cytosol plays a role in determining the extent to which C-kinase is shifted from its calcium-insensitive to its calcium-sensitive form. The second group of experiments examined the relationship between the sustained angiotensin II-induced increase in plasma membrane calcium influx and the sustained aldosterone secretory response. The results show that in the presence of 1 microM nitrendipine or 2 mM extracellular K+, angiotensin II causes no increase in calcium influx and only a transient rather than a sustained increase in the rate of aldosterone secretion indicating that the sustained phase of the response is dependent upon a continued high rate of Ca2+ influx which regulates the rate of turnover of the activated C-kinase.  相似文献   

8.
9.
The present study was designed to assess the effect of okadaic acid (OA), a protein phosphatase inhibitor, on aldosterone secretion in response to angiotensin II (AII), adrenocorticotropin (ACTH) and rises in external potassium concentration (K+). AII (10nM) caused a 20-fold increase in aldosterone production and OA reduced this response by 45%. ACTH (10nM) caused an 8.6-fold increase in aldosterone secretion and OA reduced this by 83%. Increasing K+ concentration from 3 to 12mM caused a 13-fold increase in aldosterone production, which OA inhibited by 36%. These results suggest that protein phosphatases participate in the control of adrenal steroid production, even though ACTH, AII and K+ act via different intracellular messenger systems.  相似文献   

10.
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT1R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.  相似文献   

11.
Dopamine D1 receptors play an important role in movement, reward, and learning and are implicated in a number of neurological and psychiatric disorders. These receptors are concentrated in dendritic spines of neurons, including the spine head and the postsynaptic density. D1 within spines is thought to modulate the local channels and receptors to control the excitability and synaptic properties of spines. The molecular mechanisms mediating D1 trafficking, anchorage, and function in spines remain elusive. Here we show that the synaptic scaffolding protein PSD-95 thought to play a role in stabilizing glutamate receptors in the postsynaptic density, interacts with D1 and regulates its trafficking and function. Interestingly, the D1-PSD-95 interaction does not require the well characterized domains of PSD-95 but is mediated by the carboxyl-terminal tail of D1 and the NH(2) terminus of PSD-95, a region that is recognized only recently to participate in protein-protein interaction. Co-expression of PSD-95 with D1 in mammalian cells inhibits the D1-mediated cAMP accumulation without altering the total expression level or the agonist binding properties of the receptor. The diminished D1 signaling is mediated by reduced D1 expression at the cell surface as a consequence of an enhanced constitutive, dynamin-dependent endocytosis. In addition, genetically engineered mice lacking PSD-95 show a heightened behavioral response to either a D1 agonist or the psychostimulant amphetamine. These studies demonstrate a role for a glutamatergic scaffold in dopamine receptor signaling and trafficking and identify a new potential target for the modulation of abnormal dopaminergic function.  相似文献   

12.
13.
We have previously shown, through the use of selective D1 and D2 dopamine receptor interactive drugs, that repetitive jaw movements in rats can be produced by activation of the D1 system or blockade of the D2 system. In the present study we have shown that genetic or developmental factors resulting in a lesser number of D2--relative to D1--receptors is associated with repetitive jaw movements. We have found in two strains of rats with different striatal D2 to D1 ratios, the strain with fewer D2 sites had more jaw movements. We also found that experimental reduction of D2 receptors via prenatal intervention resulted in an increase in spontaneous jaw movements, as did aging, which is accompanied by a decrease in the number of D2 receptors. The findings of these studies carried out in rats, parallel, in a number of ways, findings in human oral dyskinesia associated with either aging or neuroleptic treatment.  相似文献   

14.
The angiotensin II type 1 (AT(1)) receptor signals via heterotrimeric G-proteins and intracellular tyrosine kinases. Here, we investigate a modified AT(1) receptor, termed M5, where the last five tyrosines (residues 292, 302, 312, 319, and 339) within the intracellular carboxyl tail have been mutated to phenylalanine. This receptor did not elevate cytosolic free calcium or inositol phosphate production in response to angiotensin II, suggesting an uncoupling of the receptor from G-protein activation. Despite this, the M5 receptor still activated tyrosine kinases, induced STAT1 tyrosine phosphorylation, and stimulated cell proliferation. We also studied another AT(1) mutant receptor, D74E, stably expressed in Chinese hamster ovarian cells and a fibroblast cell line from mice with a genetic inactivation of Galpha(q/11). Both cell lines have a deficit in calcium signaling and in G-protein activation, and yet in both cell lines, angiotensin II induced the time-dependent tyrosine phosphorylation of STAT1. These studies are the first to show the ability of a seven-transmembrane receptor to activate intracellular tyrosine kinase pathways in the absence of a G-protein-coupled rise in intracellular calcium.  相似文献   

15.
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.  相似文献   

16.
Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-gamma and differentiation with vitamin D(3), respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.  相似文献   

17.
Employing the D4 selective phenylpiperazine 2 as a lead compound, planar chiral analogs with paracyclophane substructure were synthesized and evaluated for their ability to bind and activate dopamine receptors. The study revealed that the introduction of a [2.2]paracyclophane moiety is tolerated by dopamine receptors of the D2 family. Subtype selectivity for D4 and ligand efficacy depend on the absolute configuration of the test compounds. Whereas the achiral single-layered lead 2 and the double-layered paracyclophane (R)-3 showed partial agonist properties, the enantiomer (S)-3 behaved as a neutral antagonist.  相似文献   

18.
The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4 = 0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4 = 3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted.  相似文献   

19.
A Ganguly  T Hampton 《Life sciences》1985,36(15):1459-1464
The requirement for calcium in the serotonin-mediated aldosterone secretion was investigated using rat adrenal capsular cells. In the calcium-free medium both basal as well as serotonin-stimulated aldosterone secretion (at concentrations of 10(-7) M and 10(-8) M of serotonin) were significantly impaired. The effects of calcium-channel blockers were then examined. Verapamil (10(-5) M and 10(-6) M markedly inhibited basal and serotonin-evoked aldosterone secretion. In equimolar concentrations nifedipine had much less effect and diltiazem produced no apparent attenuation of either basal or serotonin-stimulated aldosterone secretion. These results indicate the calcium-dependence of serotonin-induced aldosterone secretion. The variable effects of the calcium-channel blockers suggest different or multiple mechanisms of action of these agents.  相似文献   

20.
Dopamine receptors are G protein-coupled receptors that are critically involved in locomotion, reward, and cognitive processes. The D2 class of dopamine receptors (DRD2, -3, and -4) is the target for antipsychotic medication. DRD4 has been implicated in cognition, and genetic studies have found an association between a highly polymorphic repeat sequence in the human DRD4 coding region and attention deficit hyperactivity disorder. Using DRD4 as a model, we show that antipsychotics can function as potent pharmacological chaperones up-regulating receptor expression and can also rescue a non-functional DRD4 folding mutant. This chaperone-mediated up-regulation involves reduced degradation by the 26 S proteasome; likely via the stabilization of newly synthesized receptor in the endoplasmic reticulum. Dopamine itself can function as a chaperone when shuttled into the cell by means of the dopamine transporter. Furthermore, different repeat variants of DRD4 display differential sensitivity to this chaperone effect. These data suggest that folding efficiency may be rate-limiting for dopamine receptor biogenesis and that this efficiency differs between receptor variants. Consequently, the clinical profile of dopaminergic ligands, including antipsychotics, may include their ability to serve as pharmacological chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号