首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat monoclonal antibodies (MAbs) specific for a British F (MAV-like) isolate of barley yellow dwarf virus (BYDV) were produced and studied. In indirect ELISA using an antiserum to BYDV-F to trap virus from infected sap, the MAbs were shown to be specific for MAV-like isolates of BYDV from Britain, USA and Sweden but, in this test, they did not detect PAV-, RPV-, SGV- or RMV- like isolates of BYDV. In similar tests using homologous antisera to trap the viruses, the MAbs did not detect BYDV-PAV or -RPV or two other luteoviruses (potato leafroll and beet western yellows). One of the MAbs (MAFF 2) was partially purified from ascitic fluid, and used successfully in ELISA as a coating antibody and when conjugated to the enzyme alkaline phosphatase. Also, MAFF 2 successfully trapped BYDV-F particles when used to coat electron microscope grids. In indirect ELISA using three MAbs (MAFF 2, MAC 91 and MAC 92) it was possible to type the three major strain groups of BYDV, viz. MAV, PAV and RPV-like strains from Britain, USA and Europe.  相似文献   

2.
Monoclonal antibodies to beet soil-borne virus   总被引:1,自引:0,他引:1  
Four monoclonal antibodies (MCA) were obtained to the ‘Ahlum’ serotype of beet soil-borne virus (BSBV). On ELISA plates which had been precoated with polyclonal antibodies (PCA) all four MCA detected this serotype with a higher sensitivity than alkaline phosphatase-labelled PCA. Three of the MCA were specific for the ‘Ahlum’ serotype, but a fourth one also detected the distantly related ‘Wierthe’ serotype. Cross-reactions with wheat soil-borne or oat golden stripe furoviruses were not observed. One of the MCA reacted with an epitope which is exposed along the entire length of the BSBV particles, whereas two others were specific for epitopes which are exposed on one particle extremity only. Although these latter two epitopes occur apparently on the same extremity of the particles, they seem to be different, because one is found only on the particles of the ‘Ahlum’ serotype, whereas the other one is present also on the particles of the ‘Wierthe’ serotype. The fourth MCA is specific for a cryptotope which is not exposed on the intact virus particles, but presumably on some degradation product or precursor of the viral coat protein present in crude sap preparations. All four epitopes are SDS-labile; they are not detected on denatured viral coat protein on Western blots.  相似文献   

3.
Mouse monoclonal antibodies (MAbs) specific for potato virus M (PVM) were prepared and the properties of three of them were studied. MAb M4C1 is IgG2b, it binds with high affinity to PVM coat protein, to purified virus preparations and recognises PVM in infected potato leaves and tubers. MAb M6D5 is IgG2a and also reacts with PVM coat protein, purified PVM and with PVM in potato leaf and tuber extracts. In double-antibody sandwich ELISA (DAS ELISA) MAbs M4C1 and M6D5 reacted with all 17 PVM isolates tested. MAb M7 is IgG2b and recognises PVM only in indirect dot ELISA on nitrocellulose filters and viral coat protein on Western blots. MAbs against PVM were used as capture antibodies and europium-labelled MAbs as conjugates in time-resolved fluoroimmunoassay (EuTRFIA). The standard EuTRFIA curve of PVM detection is approximately linear over a range of PVM concentrations from 0.5 ng/ml to 1000 ng/ml. The lowest PVM concentration detectable in EuTRFIA was 0.5 ng/ml and correspondingly 6 ng/ml in DAS ELISA. The use of the europium chelate label allows PVM detection in potato leaf and tuber sap at dilutions greater than 10--4 with very low background fluorescence. EuTRFIA with MAbs, with either one or two incubations is about 10–20 times more sensitive for PVM detection than is DAS ELISA. PVM and PVX, mixed with healthy potato tuber sap, were simultaneously tested in a single sample at concentrations lower than 10 ng/ml by double-label TRFIA using europium-labelled MAbs to PVM and samarium-labelled MAbs to PVX.  相似文献   

4.
5.
Three of 10 monoclonal antibodies (MAbs) produced to potato leafroll luteovirus (PLRV) were found to react in triple antibody sandwich ELISA (TAS-ELISA) with groundnut rosette assistor luteovirus (GRAV), though none reacted with four other luteoviruses (barley yellow dwarf, bean leaf roll, beet western yellows or carrot red leaf)- The most effective PLRV MAb, SCR 6, was used in TAS-ELISA to detect isolates of GRAV from groundnut plants with chlorotic, green and mosaic forms of rosette from Nigeria and Malawi. The test also detected GRAV in extracts of single Aphis craccivora.  相似文献   

6.
We have searched for beet necrotic yellow vein virus (BNYVV) populations with a recombined genome which could possibly arise when transgenic sugarbeets expressing the coat protein gene of A type BNYVV are grown in soil containing Polymyxa betae carrying B type BNYVV, in soil samples from previous field release experiments and in a greenhouse model experiment. In order to accelerate the potential evolution of virus populations with recombined genomes in the model experiment, eight successive crops of sugarbeet plantlets were grown in the same soil samples over a period of 3 years. For the sensitive detection of recombined BNYVV genomes, we used nested PCRs with sense primers that are preferentially extended on the A type BNYVV sequence in the region of the coat protein gene and antisense primers which are preferentially extended on the B type BNYVV sequence in a region downstream of the coat protein gene which is not present in the transgene. Controls with mixtures of sap from plants which were singly infected with A or with B type BNYVV only revealed that, unless proper precautions are taken, PCR-mediated recombination artifacts may readily be produced. A method was developed that is able to detect A type/B type recombinant RNA molecules up to dilutions of one to a million in pure B type RNA molecules. Inspite of this high sensitivity we failed to detect any BNYVV with a recombined genome in the transgenic plants of the model experiment or at the sites of the previous field release experiments.  相似文献   

7.
A method was devised which gave consistent yields (1–2 mg/kg leaves) of potato mop-top furovirus (PMTV) particles. Monoclonal antibodies (MAbs) were produced and some properties of 10 of them were studied. Four MAbs readily detected PMTV isolates from six countries in Northern Europe and Japan when the isolates were trapped with polyclonal antibody; and diagnostic tests based solely on MAbs (SCR 68 to coat plates and biotin- or enzyme-labelled SCR 69 to detect trapped virus) were devised. The pattern of reactions of the MAbs in ELISA and immunoblots suggested that they react with at least five different epitopes. PMTV coat protein preparations were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Three bands of 23.9 kd, 21.5 kd and 20.5 kd were visible in silver-stained gels and all three reacted with PMTV specific MAbs. The relative amounts of the three bands varied between different virus preparations, but the 21.5 kd band was usually the most abundant. The three bands were probably not produced by anomalous behaviour in SDS-PAGE. Moreover PMTV protein was readily degraded by trypsin treatment giving a band of 20.5 kd. Therefore the results suggest that PMTV coat protein sub-units are sensitive to degradation by plant proteases. At least two degraded forms were found when purified preparations were analysed by SDS-PAGE, and the undegraded protein was estimated to be 23.9 kd. The PMTV MAbs did not react in immunoblots with SDS-treated coat protein preparations of beet necrotic yellow vein furovirus or Indian peanut clump furovirus.  相似文献   

8.
Beet necrotic yellow vein virus (BNYVV) is the most devastating pathogen of sugar beet worldwide. This virus has been reported in the majority of sugar beet growing regions of Iran as well. For the present study, we collected samples from different sugar beet varieties with suspected symptoms of BNYVV from the main important sugar beet growing regions in eight provinces of Iran. Infection of collected samples to BNYVV was tested by ELISA and RT-PCR. Upon testing of 167 collected samples of BNYVV suspected through ELISA and RT-PCR, 115 (68.9%) were infected. Different incidences of BNYVV through surveyed provinces may represent the presence of diverse infective viral sources or resistance genes in tested sugar beet varieties which need further attempts to develop control strategies. Results also showed that BNYVV has been recently distributed throughout some surveyed regions. Otherwise, trace infection or resistance to BNYVV infection in some varieties of distinct regions may represent proper sources of resistance to BNYVV.  相似文献   

9.
Polymyxa betae isolates were obtained by means of bait plants from a large number of soil samples collected in eastern Germany. Additional P. betae isolates were received from several institutions in western Germany and abroad. Isolates were grown on sugarbeet seedlings and tested for the presence of beet necrotic yellow vein virus (BNYVV) and beet soilborne virus (BSBV). BNYVV was only present in isolates from western Germany and abroad but absent in all isolates from eastern Germany., In contrast, BSBV was detected in more uniform geographic distribution in 14 out of 33 P. betae isolates tested. The virulence of P. betae isolates was estimated on the basis of the extent of resting spore formation in the root system of sugarbeet seedlings. Differences in virulence were found among virus-free as well as virus-carrying P. betae isolates. The mean value of virulence ratings was distinctly lower with BNYVV-carrying isolates and slightly lower with BSBV-carrying isolates as compared to virus-free isolates.  相似文献   

10.
Citrus tristeza virus (CTV) is distributed worldwide and causes the most economically important virus diseases of citrus. Enzyme‐linked immunosorbent assay (ELISA) and/or immunoprinting have become an indispensable tools for large‐scale diagnosis of CTV worldwide. Several CTV detection kits are commercially available, based on either polyclonal or monoclonal antibodies developed against purified virus preparations. We have developed polyclonal antibodies to recombinant p25 CTV coat proteins (rCP) and determined their effectiveness for both trapping and as the intermediate antibody in double‐antibody sandwich indirect (DASI) ELISA. The p25 coat protein gene of three CTV isolates was amplified by RT‐PCR and further cloned and expressed in Escherichia coli cells. The rCP was injected into rabbits and goats for antibody production. Western blotting assays with the rCP CTV‐specific antibodies reacted positively with the homologous and heterologous rCP of the three CTV isolates and with the corresponding native coat protein present in crude sap extracts of CTV‐infected citrus tissue, but not with extracts from healthy tissue. The rCP antibodies from goat and rabbit reacted as both plate trapping and intermediate antibodies in DASI‐ELISA, discriminating healthy and CTV‐infected citrus, with optical density (OD405) values in the range of 0.151–2.415 for CTV‐infected samples and less than 0.100 for healthy tissue. Commercially available anti‐CTV antibodies were used as a reference. Previous reports indicate that antibodies developed to recombinant antigens, including those of CTV, may not be functional for trapping the target antigens under non‐denaturing conditions. Our results showed the feasibility of CTV antibodies developed to the rCP for use as both trapping and intermediate antibodies in DASI‐ELISA, when the recombinant antigen was fractioned with polyacrylamide electrophoresis gel and further extensively dialysed against phosphate buffer saline prior to its use as immunogen.  相似文献   

11.
Four mouse monoclonal antibodies (MAbs) specific for the Andean strain of potato virus S (PVSA) were produced. The MAbs reacted with four isolates of PVSAbut did not react with four isolates of ordinary strain of PVS (PVSO). The MAbs did not react with six other members of the Carlavirus group including potato virus M. A MAb-based ELISA, using MAbs (IEB-1 and IEB-4-AP), was devised and shown to specifically detect PVSA.  相似文献   

12.
Black raspberry necrosis virus (BRNV) reaches only very low concentrations in herbaceous plants and is difficult to maintain in culture. However, in a mixed culture with an unrelated virus, Solanum nodiflorum mottle (SNMV), in the genus Sobemovirus, the concentration of BRNV particles increases about 1000‐fold. In attempts to produce monoclonal antibodies (MAbs) to BRNV for diagnostic use, purified virus particles from the mixed virus culture were used as immunogen and the resultant antibodies screened against cultures of SNMV alone, BRNV+SNMV and healthy plant extracts. None of the virus‐specific MAbs obtained in this way was specific to BRNV but six were specific to SNMV. Although the original objective was not achieved, the SNMV MAbs were characterised and used to study serological properties of SNMV and other Sobemoviruses. Characterisation of the six SNMV MAbs showed that four were IgG3, one IgG1 and the other IgG2b. SNMV was detected by all six MAbs in ELISA, by five in Western blotting, by three in agarose gel double diffusion tests, but only one was suitable for trapping virus particles in immuno‐electron microscopy (IEM). In Western blotting using virus in sap extracts of Nicotiana clevelandii, each of the five MAbs detected a single major band of Mc. 31 000 in sap containing SNMV, and additional bands of lower mass attributed to degradation of coat protein. In various serological tests, no cross‐reactions were detected between SNMV and seven other viruses from the genus Sobemovirus. However, in IEM but not in Western blotting, significant cross‐reactions were observed between SNMV and Velvet tobacco mottle virus, another species from the genus Sobemovirus. The significance of these different findings is discussed.  相似文献   

13.
The relationships among fifteen isolates of whitefly-transmitted geminiviruses (WTGs) from North, Central and South America and six from other continents were assessed (a) in nucleic acid hybridisation tests with sulphonated DNA probes for eight of the viruses, and/or (b) in triple-antibody-sandwich ELISA with panels of monoclonal antibodies (MAbs) to particles of African cassava mosaic virus (ACMV) and Indian cassava mosaic virus (ICMV). Probes specific for DNA-A of four American viruses, abutilon mosaic (AbMV), bean golden mosaic (BGMV), squash leaf curl (SLCV) and tomato golden mosaic (TGMV), detected virtually all the American viruses but reacted weakly if at all with ICMV, ACMV or tomato yellow leaf curl virus from Thailand (TYLCV-T). Conversely, the probe for ACMV DNA-A did not detect any of the American viruses, and that for TYLCV-T DNA-A reacted weakly with SLCV and TGMV0020but did not detect the others. In contrast, probes specific for DNA-B of the four American viruses or ACMV detected only the homologous virus, except for slight reactions between the AbMV DNA-B probe and both chino del tomate virus (CdTV)-DNA and SLCV-DNA. However, a probe for DNA-B of bean calico mosaic virus (BCMoV) reacted weakly with BGMV-PR DNA, and a probe for DNA-B of CdTV from Mexico detected several American viruses. Six out of 17 MAbs specific for ACMV and six out of 10 MAbs specific for ICMV reacted with one or other of the 14 American virus isolates tested. Two and-ACMV MAbs reacted with all, and one anti-ACMV MAb and two anti-ICMV MAbs reacted with nearly all the American viruses, one anti-ACMV MAb reacted with about half the American viruses and six other MAbs reacted with only one or two of them. Of the American viruses, CdTV and AbMV were the least closely related to the others. The epitope profiles of BCMoV, BGMV, cotton leaf crumple virus, serrano golden mosaic virus and SLCV were virtually indistinguishable. TGMV, potato yellow mosaic virus (PYMV) and an euphorbia virus had profiles intermediate between those of the BGMV cluster and AbMV-CdTV. In general, the epitope profiles and the results of hybridisation tests with DNA-A probes show that the similarities among the American viruses are greater than those between the American viruses and the viruses from other continents; the hybridisation tests with DNA-B probes show that substantial differences exist between individual American viruses. In America, geminivirus evolution seems to have proceeded convergently from different progenitor viruses, or divergently from one ancestral form, with DNA-B diverging to a greater extent than DNA-A and its particle-protein gene.  相似文献   

14.
15.
The soil fungus Polymyxa betae, Keskin, besides being a root parasite, plays a role of a vector in dissemination of Beet necrotic yellow vein virus (BNYVV) causing rhizomania in sugar beet. An alternative to its chemical control is the application of antagonistic microorganisms suppressing proliferation of the fungal vector. In the present work, 66 Trichoderma isolates have been obtained from sugar beet plantations from diverse locations in Slovakia. The ability of the selected isolates to grow at low temperature (10 °C) and to suppress the colonization of roots with P. betae and the multiplication of BNYVV in roots under glasshouse conditions were tested. The roots of sugar beet seedlings growing in the BNYVV-infested soil were analyzed by serological ELISA test using monoclonal and polyclonal antibodies for the presence of BNYVV and checked microscopically for the occurrence of cystosori of P. betae. The efficacy of the selected strains to suppress the proliferation of BNYVV varied on the average between 21 and 68%. On the basis of these tests, candidate strains for practical application in biocontrol of sugar beet rhizomania were selected.  相似文献   

16.
Summary Infection of sugar beet roots by beet necrotic yellow vein virus (BNYVV) was investigated with transmission electron microscopy, immunogold labelling and enzyme linked immuno sorbent assay (ELISA). Here we show that infection of sugar beet roots is very fast, occurring during germination. Seedlings grown directly in infected soil showed higher BNYVV infection than plants transplanted into infected soil after seven days of initial growth in sterilized soil. The earlier the initial infection, the faster was its spread. The study showed that a few differentiated cells of the cortex and of the xylem parenchyma were the preferred sites of viral multiplication. The spread of viral infection was slow through differentiated tissues. Intact virions were frequently found in undifferentiated and mature vessel elements and xylem parenchyma, whereas they were rare in sieve elements. Virus particle number in the differentiating tracheary elements was high, suggesting that infection of the vessel elements preceded their differentiation. This would explain increased infection after early inoculation. Even the xylem tissue of the primary root was highly infected, the seedlings lacked virus particles in their hypocotyls and leaves.  相似文献   

17.
番茄花叶病毒单克隆抗体的制备及检测应用   总被引:17,自引:2,他引:17  
用番茄花叶病毒(ToMV)免疫的BAL B/c鼠脾细胞与SP2/0鼠骨髓瘤细胞融合,经筛选克隆,获得4株能稳定传代并分泌抗ToMV单克隆抗体(Mab)的杂交瘤细胞,其中2株能同时检测ToMV和烟草花叶病毒(TMV),各单克隆抗体腹水ELLSA效价在1∶32 000~1∶1 024 000之间。经TASELISA测定,4株单克隆抗体检测病汁液的稀释度均能达到1∶2 000倍以上。4株单克隆抗体与其他病毒无交叉反应。Westernblot分析表明,其中两株与ToMV176kD的外壳蛋白亚基有特异反应,而另两株无反应,推测它们是针对构象决定簇的抗体。  相似文献   

18.
Different polyclonal antisera and enzyme-linked immunosorbent assay (ELISA) procedures have been tested for their potential to detect tomato spotted wilt virus (TSWV). The virus could efficiently be detected in high dilutions of sap from infected plants, and at low concentrations of purified virus and nucleocapsid protein preparations in the cocktail ELISA and the double antibody sandwich ELISA (DAS-ELISA). Amounts of 1 to 3 ng of virus protein still gave positive readings using purified preparations, while sap could be diluted approximately 100,000 times. Differences in the detection level were observed using nucleocapsid protein antiserum (anti-N-serum) and the antiserum against intact virus particles (anti-TSWV-serum), but both antisera showed to be powerful sera for the detection of TSWV. Using anti-N-serum, TSWV could be detected in highly diluted extracts of different hosts, and also in leaf extracts or intact tissues stored for 30 days under different conditions. These results indicate that the TSWV nucleocapsid protein remains antigenic for long periods.  相似文献   

19.
Monoclonal antibodies (MAbs) were produced against white spot syndrome virus (WSSV) of penaeid shrimp. The virus isolate used for immunization was obtained from China in 1994 and was passaged in Penaeus vannamei. The 4 hybridomas selected for characterization all produced MAbs that reacted with the 28 kD structural protein by Western blot analysis. The MAbs tested in dot-immunoblot assays were capable of detecting the virus in hemolymph samples collected from moribund shrimp during an experimentally induced WSSV infection. Two of the MAbs were chosen for development of serological detection methods for WSSV. The 2 MAbs detected WSSV infections in fresh tissue impression smears using a fluorescent antibody for final detection. A rapid immunohistochemical method using the MAbs on Davidson's fixed tissue sections identified WSSV-infected cells and tissues in a pattern similar to that seen with digoxigenin-labeled WSSV-specific gene probes. A whole mount assay of pieces of fixed tissue without paraffin embedding and sectioning was also successfully used for detecting the virus. None of the MAbs reacted with hemolymph from specific pathogen-free shrimp or from shrimp infected with infectious hypodermal and hematopoietic necrosis virus, yellow head virus or Taura syndrome virus. In Western blot analysis, the 2 MAbs did not detect any serological differences among WSSV isolates from China, Thailand, India, Texas, South Carolina or Panama. Additionally, the MAbs did not detect a serological difference between WSSV isolated from penaeid shrimp and WSSV isolated from freshwater crayfish.  相似文献   

20.
A Scottish isolate of cocksfoot streak virus (CSV-S) was found to have flexuous filamentous particles which, in sap of infected cocksfoot plants, had a modal length of 712 nm. It was transmitted from infected to healthy cocksfoot plants in a non-persistent manner by Myzus persicae and by mechanical inoculation of infective sap extracts containing an anti-oxidant. Apart from cocksfoot, mechanical inoculation of infective sap succeeded in infecting only four of 22 plant species tested. The infectivity of sap extracts containing 0.2% thioglycerol was lost after heating for 10 min at 55oC but not 50oC, storage at room temperature for 48 but not 24 hours, and after diluting 10-2 to 10-3. Highly purified preparations of CSV-S particles sedimented as a single component with a sedimentation coefficient of 139S and had a buoyant density in rubidium bromide of 1.31 g/cm3. Virus particles were composed of one protein and one ssRNA species with estimated Mr of 31 000 and 3.2 times 106 respectively. In ELISA, an antiserum prepared to CSV-S detected the virus in all aerial parts of infected cocksfoot plants and, when present in the ratio of 1 infected leaf: 1000 healthy leaves. Both CSV-S-infected and -uninfected cocksfoot also contained a previously undescribed virus with isometric particles c. 30 nm in diameter. This virus, named cocksfoot cryptic virus (CCV), was seed-borne in two cvs of cocksfoot tested and its particles contained two dsRNA species of estimated Mt of 1.14 times 106 and 1.27 times 106. Despite the fact that particles of CSV-S were largely free from CCV particles following exclusion chromatography on agarose beads prior to immunisation, immunoelectron microscopy (IEM) showed that the antiserum prepared to CSV-S also contained some antibodies to CCV. Evidence from IEM suggested a possible distant serological relationship of CCV to ryegrass and beet (BCV 1 or BCV 2, or both) cryptoviruses, all members of sub-group A of cryptoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号