首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The lipid composition of microsomes, mitochondria and chromaffin granules, obtained from homogenates of bovine adrenal medulla, has been investigated. 2. The three types of particle showed characteristic differences of phospholipid and cholesterol content. The lipid composition of microsomes and mitochondria resembled that of corresponding particles from other tissues. The chromaffin granules contained 19% of the cholesterol and 14% of the phospholipids of the low-speed supernatant. 3. Thin-layer chromatography indicated the presence of these phospholipids in extracts from each particle: lecithin, lysolecithin, phosphatidylethanolamine (partly plasmalogen), phosphatidylserine, phosphatidylinositol and sphingomyelin. 4. On quantitative analysis of the phospholipids, chromaffin granules were found to contain a high concentration of lysolecithin (17% of the lipid phosphorus). Mitochondria and microsomes, on the other hand, contained very little lysolecithin (less than 2% of the lipid phosphorus).  相似文献   

2.
Exposure of guinea pig liver microsomes to phospholipase A2 resulted in the nearly complete loss of 17β-hydroxy-steroid oxidoreductase (17β-HSD) activity, the time course of which correlated with phospholipid hydrolysis and lysolecithin formation. Lysolecithin and unsaturated fatty acids added to microsomes also inactivated 17β-HSD indicating that they may contribute to the inactivation by phospholipase A2.If exposure to lysolecithin and fatty acids was minimized by including serum albumin in the reaction mixture, phospholipids were rapidly hydrolyzed; but in this case the extent of 17β-HSD inactivation was less and the rate of loss was significantly slower. The data suggest that phospholipid hydrolysis per se results in a destabilization of 17β-HSD resulting in the subsequent activity loss.The inactivation of 17β-HSD by lysolecithin and fatty acids has not been reported previously and is suggestive of a possible control mechanism in vivo.  相似文献   

3.
Pregnancy-associated decrease in lipid peroxidation in rat liver   总被引:1,自引:0,他引:1  
A significant decrease in the hepatic malonaldehyde content and lipid peroxidation, induced by ascorbate, NADPH and cumene hydroperoxide, was observed during gestation in the rat. Lipid peroxidation tends to reach normal levels 3 days post partum. While a significant decrease in the lipid peroxidation of hepatic mitochondria was observed with ascorbate and NADPH, that of microsomes was affected by ascorbate and cumene hydroperoxide. The observed decrease in lipid peroxidation during pregnancy seems to be due to lesser phospholipid content, a lower degree of unsaturation in lipids, and an increase in the level of antioxidants.  相似文献   

4.
Decreased lipid peroxidation in the rat kidney during gestation   总被引:4,自引:0,他引:4  
Renal malonaldehyde content and lipid peroxidation, induced by ascorbate, NADPH and cumene hydroperoxide, are significantly decreased during gestation in rats. Lipid peroxidation tends to reach normal levels in the kidney post partum. In the renal mitochondria lipid peroxidation without co-factors and that induced by cumene hydroperoxide, ascorbate and NADPH is decreased during pregnancy. However, in the microsomes, only lipid peroxidation induced by NADPH and cumene hydroperoxide is affected. The observed decrease in lipid peroxidation during gestation is reflected by low levels of total lipid and phospholipid. Endogenous inhibitors of lipid peroxidation also increase during pregnancy.  相似文献   

5.
Ferritin, a physiological iron donor for microsomal lipid peroxidation   总被引:3,自引:0,他引:3  
J F Koster  R G Slee 《FEBS letters》1986,199(1):85-88
In the process of lipid peroxidation of microsomes induced either by oxygen radicals generated by xanthine oxidase or by NADPH, ferritin is able to donate the necessary iron. The amount of ferritin necessary to catalyze the process of lipid peroxidation is in the physiological range. In contrast to the finding with phospholipid liposomes, catalase hardly stimulates the lipid peroxidation of microsomes.  相似文献   

6.
It was found that the rate of the NaDPH-dependent lipid peroxidation in rat microsomes in vitro decreases 3 hours and increases 24, 48 and 72 hours after the injection of a highly dispersed iron powder (2 mg/kg). The number of readily oxidizable phospholipid fractions (phosphatidylethanolamine, phosphatidylinositol) was shown to decrease 3 hours and to increase 24 hours following the injection. A direct correlation was observed between the activity of the NADPH-dependent microsomal lipid peroxidation system and the level of natural antioxidants in the lipids.  相似文献   

7.
Rat liver microsomes incorporate [14C]palmitoyl CoA into membrane phospholipids via the deacylation/acylation cycle. This activity is reversibly inactivated/activated by treatment of the microsomes with ATP, MgCl2, and 105,000g supernatant or with 105,000g supernatant alone. These observations suggest that the acylation cycle is controlled by a mechanism involving phosphorylation/dephosphorylation. As the pool of lysolecithin in the membranes is not altered by conditions increasing incorporation of palmitoyl CoA into phospholipid, it is probable that the site of regulation of deacylation/acylation is at the acyltransferase rather than the phospholipase.  相似文献   

8.
Antioxidant action of Mn2+ on radical-mediated lipid peroxidation without added iron in microsomal lipid liposomes and on iron-supported lipid peroxidation in phospholipid liposomes or in microsomes was investigated. High concentrations of Mn2+ above 50 microM inhibited 2,2'-azobis (2-amidinopropane) (ABAP)-supported lipid peroxidation without added iron at the early stage, while upon prolonged incubation, malondialdehyde production was rather enhanced as compared with the control in the absence of Mn2+. However, in a lipid-soluble radical initiator, 2,2'-azobis (2,4-dimethyl-valeronitrile) (AMVN)-supported lipid peroxidation of methyl linoleate in methanol Mn2+ apparently did not scavenge lipid radicals and lipid peroxyl radicals, contrary to a previous report. At concentrations lower than 5 microM, Mn2+ competitively inhibited Fe(2+)-pyrophosphate-supported lipid peroxidation in liposomes consisting of phosphatidylcholine with arachidonic acid at the beta-position and phosphatidylserine dipalmitoyl, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-supported lipid peroxidation in the presence of iron complex in microsomes. Iron reduction responsible for lipid peroxidation in microsomes was not influenced by Mn2+.  相似文献   

9.
The role of lysolecithin acyltransferase activities in biliary lecithin formation was investigated, using livers perfused in the presence of labeled palmitoyl-lysolecithin and albumin, overloaded or not with linoleic acid. At the end of liver perfusion, the lecithins extracted from microsomes, mitochondria and plasma membranes displayed the same specific activity. Double-labeled lysolecithin was used to prove that labeled lecithins were synthesized by lysolecithin acylation. In the absence or presence of a linoleic acid overload, the level of lysolecithin incorporation into linoleyl and arachidonyl containing lecithin was identical. Hence fatty acids did not influence phosphatidylcholine synthesis by the acylation pathway. In vitro the rate of linoleyl lecithin synthesis was the same in plasma membranes, mitochondria and microsomes provided the linoleyl-CoA concentration was lower than 30 microM. Taurocholate was essential to the excretion of lecithin synthesized from lysolecithin and stimulated its synthesis. The specific activities of the two lecithin molecular species excreted in bile (linoleyl and arachidonyl) were not significantly different. These results enabled us to evaluate the contribution of the lysolecithin pathway to the synthesis of lecithin in liver and bile: this contribution in bile was less than 2% under the perfusion conditions used.  相似文献   

10.
The kinetics of NADPH-induced lipid peroxidation in hepatic rough and smooth microsomes have been studied in rats ranging in age from 1 day to 2 years. Apparent Km and Vmax for NADPH and the extent of lipid peroxidation show that lipid peroxidation potential is low at birth, increases during postnatal development, and decreases during senescence. Our results indicate that this trend may be due to changes in phospholipid content and NADPH cytochrome c reductase activity in microsomal fractions.  相似文献   

11.
Effects of exogenous gamma-myristoyl- and gamma-palmitoyllysolecithins on physico-chemical characteristics of rat liver microsomes, such as hydrophobicity and viscosity, as well as on oxidative NADPH-dependent O-deethylation of 7-ethoxycoumarin (7-EC), O-demethylation of p-nitroanisole (p-NA) and hydroxylation of 3.4-benz(a)pyrene (BP) induced by the mechylcholanthrene xenobiotics methylcholanthrene (MCh), beta-naphthoflavone (NF) and Sovol (SV) have been investigated. The specific inducible form of P-450c showed different affinity for the substrates. Lysolecithin decreased the hydrophobicity but only slightly increased membrane viscosity, whereas the monooxygenase substrates neutralized these effects. Lysolecithin (2-20 micrograms/mg of microsomal protein) inhibited the activity of deethylase 7-EC (maximally by 11%) in NF- and SV-induced microsomes, this inhibiting effect being more pronounced than that in MCh-induced microsomes. At higher concentrations lysolecithin inhibited the rate of 7-EC deethylation in MCh-induced microsomes more strongly; the maximal inhibition (23%) was observed at the protein concentration of 60 micrograms/mg. In case of NF- and SV-induced microsomes the inhibition was 18%. The inhibiting effect of lysolecithin on 7-EC dealkylation was expressed in a lesser degree than that on p-NA O-demethylation in induced (but not intact) microsomes. A significant positive correlation has been found between the changes in hydrophobicity and inhibition rates in the presence of lysolecithin, however only for 7-EC deethylation.  相似文献   

12.
Pregnant female Wistar rats that received a control (100 ppm Zn) or a Zn-deficient diet (1.5 ppm Zn) from d 0 to 21, or nonpregnant normally fed female rats without or with five daily oral doses of 300 mg/kg salicylic acid were used for the experiments. In isolated mitochondria or microsomes from various maternal and fetal tissues, lipid peroxidation was determined as malondialdehyde formation measured by means of the thiobarbiturate method. Zn deficiency increased lipid peroxidation in mitochondria and microsomes from maternal and fetal liver, maternal kidney, maternal lung microsomes, and fetal lung mitochondria. Lipid peroxidation in fetal microsomes was very low. Zn deficiency produced a further reduction of lipid peroxidation in fetal liver microsomes. Salicylate increased lipid peroxidation in liver mitochondria and microsomes after addition in vitro and after application in vivo. The increase of lipid peroxidation by salicylate may be caused by two mechanisms: an increased cellular Fe uptake that, in turn, can increase lipid peroxidation and chelating Fe, in analogy to the effect of ADP in lipid peroxidation. The latter effect of salicylate is particularly expressed at increased Fe content.  相似文献   

13.
The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ~20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant.  相似文献   

14.
Liver cirrhosis was induced in rats by the combined action of oral phenobarbitone and inhalations of carbon tetrachloride vapors. These rats manifested hepatosplenomegaly, hypoalbuminemia, and 2- to 17-fold elevations in serum transaminases and alkaline phosphatase levels. The hepatic antioxidant enzymes, superoxide dismutase and catalase, showed 28 and 60% decreases, respectively. There was, however, no increase in the hepatic lipid peroxidation. These studies suggest that in cirrhosis liver cell damage may result due to the direct attack of the oxygen free radicals. Lipid peroxidation in the liver may not be a prerequisite for the development of cirrhosis, as is generally believed.  相似文献   

15.
The involvement of phospholipase(s) A in lipid peroxidation of rat liver microsomes was investigated by: (a) determining the effects of phospholipase A inhibitors (p-bromophenylacyl bromide, chlorpromazine, mepacrine) on the accumulation of thiobarbituric acid reactivity or on levels of oxidized phospholipids in response to selected oxidative stimuli and (b) measurement of phospholipase A activities in response to these agents. Lipid peroxidation in response to various peroxidation systems was inhibited completely by exposure of microsomes to p-bromophenylacyl bromide (250 microM). The effectiveness of p-bromophenylacyl bromide was dependent on the presence of glutathione (200 microM) in preincubation mixtures. Chlorpromazine (100 microM) and mepacrine (100 microM) also effectively inhibited peroxidation, and their potency was independent of glutathione. The accumulation of oxidized phospholipids in response to the potent peroxidation stimulus alloxan/ferrous ion was similarly inhibited by p-bromophenylacyl bromide, although the level of oxidized phospholipid in response to the initiator ADP/ferrous ion was not affected. Microsomal phospholipase A1 activity, assessed using a liposomal substrate, was substantially enhanced by promoters of lipid peroxidation. Phospholipase A2 activity was not detected using a liposomal substrate but was evident using radiolabeled microsomes as endogenous substrate and was enhanced by oxidative stimuli. We conclude that phospholipase A activity may play an integral role in the microsomal lipid peroxidation mechanism. Based on this study, we hypothesize a role for phospholipases in facilitating propagation reactions.  相似文献   

16.
The purpose of this study was to establish a relationship between self-association and phospholipid binding of the human and the baboon apoA-I protein. The enthalpy changes on binding dimyristoyl lecithin and lysolecithin to either the human or the baboon native apoA-I protein were measured in a microcalorimeter. An endothermal process, most pronounced for the human apoprotein, was observed at low phospholipid levels. At higher phospholipid to protein ratios the binding was exothermal. Gel filtration experiments on Sephadex G-200 showed that the native apoprotein of both species consists of dimers and tetramers. The baboon native apoA-I protein contained a higher amount of dimers. After preincubation of the apoA-I protein with lysolecithin, the enthalpy changes measured on subsequent binding of dimyristoyl lecithin were shifted towards more exothermal values compared to the curve for the native apoprotein. The amplitude of this shift corresponds to that of the endothermal process observed on binding dimyristoyl lecithin to the native apoprotein. This process was attributed to a phospholipid-induced disaggregation of the apoA-I protein. Gel filtration data showed a decreased extent of aggregation in the apoA-I protein preincubated with lysolecithin. This sample consisted exclusively of dimers. Ultracentrifugal flotation of the complexes formed between the apoA-I protein, and respectively dimyristoyl lecithin and sphingomyelin indicated that preincubation with lysolecithin increased the extent of complex formation. These results suggest that the dimeric form of the apoA-I protein possesses the highest affinity for phospholipids. Any dissociation of higher polymers enhances the phospholipid-binding capacity of the human and the baboon apoA-I protein.  相似文献   

17.
1-Acyl-sn-glycero-3-phosphocholine (lysolecithin) was found to affect 1,2-diacyl-sn-glycerol:CDPcholine cholinephosphotransferase (CPT; EC 2.7.8.2) activity of rat liver microsomes in a concentration dependent, characteristic manner. Cholinephosphate transfer was activated at lysolecithin concentrations below 0.5 mM with a maximum stimulation occurring at 75–100 μM lysolecithin levels. At concentrations above 0.5 mM, CPT activity was inhibited by lysolecithin. It was shown that CPT inhibition by lysolecithin is competitive (Ki ≈ 0.6 mM) with respect to CDPcholine. The possible role of lysolecithin as regulator of de novo lecithin synthesis in vivo is outlined.  相似文献   

18.
Role of cytochrome P-450 in ochratoxin A-stimulated lipid peroxidation.   总被引:2,自引:0,他引:2  
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetraacetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

19.
The azole antifungal drug ketoconazole was found to inhibit Fe(III)-ascorbate dependent lipid peroxidation using either rat liver microsomes or ox-brain phospholipid liposomes as the substrate. It also inhibited microsomal peroxidation induced by the Fe(III)-ADP/NADPH system. The related azoles, miconazole and clotrimazole, were much weaker inhibitors than ketoconazole. Ketoconazole was approximately equipotent with the triphenylethylene anticancer drug tamoxifen in the microsomal system and was almost as effective as 4-hydroxytamoxifen in the liposomal system. Ketoconazole introduced into phospholipid liposomes during their preparation inhibited Fe(III)-ascorbate induced lipid peroxidation to a greater extent than similarly introduced cholesterol, ergosterol or tamoxifen. Miconazole and clotrimazole were again poor inhibitors of lipid peroxidation in this system. These antioxidant effects of ketoconazole may be due to membrane stabilization in the systems used. The implications of our findings for the clinical applications of these drugs are discussed.  相似文献   

20.
The effect of phospholipid fatty acyl composition on the activity of acylcoenzyme A:cholesterol acyltransferase was investigated in rat liver microsomes. Specific phosphatidylcholine replacements were produced by incubating the microsomes with liposomes and bovine liver phospholipid-exchange protein. Although the fatty acid composition of the microsomes was modified appreciably, there was no change in the microsomal phospholipid or cholesterol content. As compared to microsomes enriched for 2 h with dioleoylphosphatidylcholine, those enriched with dipalmitoylphosphatidylcholine exhibited 30-45% less acyl-CoA:cholesterol acyltransferase activity. Enrichment with 1-palmitoyl-2-linoleoylphosphatidylcholine increased acyl-CoA:cholesterol acyltransferase activity by 20%. By contrast, dilinoleoylphosphatidylcholine abolished microsomal acyl-CoA:cholesterol acyltransferase activity almost completely. Addition of cofactors that stimulated microsomal lipid peroxidation inhibited acyl-CoA:cholesterol acyltransferase activity by only 10%, however, and did not increase the inhibition produced by submaximal amounts of dilinoleoylphosphatidylcholine. Certain of the phosphatidylcholine replacements produced changes in palmitoyl-CoA hydrolase, NADPH-dependent lipid peroxidase, glucose-6-phosphatase and UDPglucuronyl transferase activities, but they did not closely correlate with the alterations in acyl-CoA:cholesterol acyltransferase activity. Electron spin resonance measurements with the 5-nitroxystearate probe indicated that microsomal lipid ordering was reduced to a roughly similar extent by dioleoyl- or by dilinoleoylphosphatidylcholine enrichment. Since these enrichments produce widely different effects on acyl-CoA:cholesterol acyltransferase activity, changes in bulk membrane lipid fluidity cannot be the only factor responsible for phospholipid fatty acid compositional effect on acyl-CoA:cholesterol acyltransferase. The present results are more consistent with a modulation resulting from either changes in the lipid microenvironment of acyl-CoA:cholesterol acyltransferase or a direct interaction between specific phosphatidylcholine fatty acyl groups and acyl-CoA:cholesterol acyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号