首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
2.
3.
We examined the effects of the adipose hormone leptin on the development of mouse cortical neurons. Treatment of neonatal and adult mice with intraperitoneal leptin (5 mg/kg) induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in pyriform and entorhinal cortex neurons. Stimulation of cultured embryonic cortical neurons with leptin evoked Janus kinase 2 and ERK1/2 phosphorylation and activated the downstream effector 90-kDa ribosomal protein S6 kinase. Moreover, leptin elicited the phosphorylation of the phosphatidylinositol 3-kinase effector Akt and evoked Ser-9 phosphorylation of glycogen synthase kinase-3beta (GSK3beta), an event inactivating this kinase. Leptin-mediated GSK3beta phosphorylation was prevented by the MEK/ERK inhibitor PD98059, the phosphatidylinositol 3-kinase inhibitor LY294002, or the protein kinase C inhibitor GF109203X. Exposure of cortical neurons to leptin also induced Ser-41 phosphorylation of the neuronal growth-associated protein GAP-43, an effect prevented by LY294002 and GF109203X but not by PD98059. Ser-41-GAP-43 phosphorylation is usually high in expanding axonal growth cones. Neurons exposed to 100 ng/ml leptin for 72 h displayed reduced rate of growth cone collapse, a shift of growth cone size distribution toward higher values, and a 4-fold increase in mean growth cone surface area compared with control cultures. The leptin-induced growth cone spreading was hampered in cortical neurons from Lepr(db/db) mice lacking functional leptin receptors; it was associated with localized Ser-9-GSK3beta phosphorylation and mimicked by the GSK3beta inhibitor SB216763. At concentrations preventing GSK3beta phosphorylation, PD98059, LY294002, or GF109203X reversed the leptin-induced growth cone surface enlargement. We concluded that the leptin-mediated regulation of growth cone morphogenesis in cortical neurons relies on upstream regulators of GSK3beta activity.  相似文献   

4.
It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.  相似文献   

5.
The novel protein kinase C-beta inhibitor enzastaurin (ENZA) induced apoptosis in LNT-229 and T98G cells whereas A172 cells were resistant. Further, ENZA reduced proliferation in glioblastoma-initiating cells T 269 and T 323 but did not induce apoptosis. ENZA-induced apoptosis involved cleavage of caspases 3, 8, and 9 and led to mitochondrial cytochrome c release and was strongly suppressed by the broad spectrum caspase inhibitor zVAD-fmk but only slightly by the expression of the viral caspase 1/8 inhibitor cytokine response modifier-A. ENZA did not reduce the phosphorylation of protein kinase B (Akt), but of p70 S6 kinase and of its substrate S6 protein in T98G cells. Inhibition of the phosphatidylinositol 3 kinase signaling pathway did not restore sensitivity of A172 cells towards ENZA, and constitutively active Akt did not protect LNT-229 and T98G cells from ENZA-induced apoptosis. Dephosphorylation of glycogen synthase kinase 3beta, a biomarker of ENZA action, and cell death induction by ENZA were separately regulated. Inhibition or activation of Akt only weakly modulated ENZA-induced dephosphorylation of glycogen synthase kinase 3beta. In ENZA-resistant A172 cells, apoptosis ligand 2 (Apo2L.0)-induced cleavage of caspases 3, 8, and 9 was increased by ENZA, resulting in synergistic activity of ENZA and Apo2L.0.  相似文献   

6.
This study was designed to test the hypothesis that improved mitochondrial biogenesis could help reducing ischemic cerebral injury. We found that levels of proliferator-activated receptor γ coactivator 1α and nuclear respiratory factor-1, mitochondrial DNA content and other markers of mitochondrial biogenesis and function were reduced in primary mouse cortical neurons under oxygen-glucose deprivation (OGD). The glycogen synthase kinase-3 (GSK-3) inhibitor SB216763 activated an efficient mitochondrial biogenesis program in control cortical neurons and counteracted the OGD-mediated mitochondrial biogenesis impairment. This was accompanied by the activation of an antioxidant response that reduced mitochondrial reactive oxygen species generation and ischemic neuronal damage. The in vitro effects of SB216763 were mimicked by two other structurally unrelated GSK-3 inhibitors. The protective effects of SB216763 on OGD-mediated neuronal damage were abolished in the presence of diverse mitochondrial inhibitors. Finally, when systemically administered in vivo, SB216763 reduced the infarct size and recovered the loss of mitochondrial DNA in mice subjected to permanent middle cerebral artery occlusion. We conclude that GSK-3 inhibition by SB216763 might pave the way of novel promising therapies aimed at stimulating the renewal of functional mitochondria and reducing reactive oxygen species-mediated damage in ischemic stroke.  相似文献   

7.
Lee MW  Park SC  Yang YG  Yim SO  Chae HS  Bach JH  Lee HJ  Kim KY  Lee WB  Kim SS 《FEBS letters》2002,512(1-3):313-318
To determine the apoptotic signaling pathway which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) induced, we investigated the contribution of reactive oxygen species (ROS), p38 mitogen-activated protein (MAP) kinase and caspases in human adenocarcinoma HeLa cells. Here we show that upon TRAIL/Apo2L exposure there was pronounced ROS accumulation and activation of p38 MAP kinase, and that activation of caspases and apoptosis followed. Pretreatment with antioxidants such as glutathione or estrogen attenuated TRAIL/Apo2L-induced apoptosis through a reduction of ROS generation and diminished p38 MAP kinase and caspase activation. The p38 MAP kinase inhibitor SB203580 prevented apoptosis through a blockage of caspase activation, although ROS generation was not attenuated. Furthermore, the pan-caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone fully prevented apoptosis, while neither ROS accumulation nor p38 MAP kinase activation were affected. Therefore, our results suggest that TRAIL/Apo2L-induced apoptosis is mediated by ROS-activated p38 MAP kinase followed by caspase activation in HeLa cells.  相似文献   

8.
Recent evidence supports a role of the Wnt pathway in neurodegenerative disorders such as Alzheimer's disease (AD). A relationship between amyloid-beta-peptide (Abeta)-induced neurotoxicity and a decrease in the cytoplasmatic levels of beta-catenin has been proposed. Also, the inhibition of glycogen synthase kinase (GSK-3beta), a central modulator of the pathway, protects rat hippocampal neurons from Abeta-induced damage. Interestingly, during the progression of AD, it has been described that active GSK-3beta is found in neuronal cell bodies and neurites, co-localizing with pre-neurofibrillary tangles observed in disease brains. Since Abeta oligomers are associated with the post-synaptic region and we have found that the non-canonical Wnt signaling modulates PSD-95 and glutamate receptors, we propose that the synaptic target for Abeta oligomers in AD is the postsynaptic region and at the molecular level is the non-canonical Wnt signaling pathway. Altogether, our evidence suggests that a sustained loss of Wnt signaling function may be involved in the Abeta-dependent neurodegeneration observed in AD brains and that the activation of this signaling pathway could be of therapeutic interest in AD.  相似文献   

9.
Wnts are secreted glycoproteins that control diverse biological processes, such as proliferation, differentiation, and apoptosis. We here found that Wnt5a inhibited apoptosis induced by serum deprivation in primary-cultured human dermal fibroblasts. Anti-apoptotic activity of Wnt5a was not inhibited by a dickkopf-1 (DKK), which blocks the canonical Wnt pathway. On the other hand, loss of function of protein kinase A (PKA), induced by treatment with PKA inhibitors, siRNA-mediated knocking down of endogenous PKA catalytic subunits, or enforced expression of dominant-negative PKA inhibited the Wnt5a anti-apoptotic activity, indicating the involvement of PKA in the Wnt5a anti-apoptotic activity. In agreement, phosphorylation levels of a cAMP response element binding protein (CREB), a representative downstream effector of PKA, the activation of which is known to lead to the pro-survival effects, was elevated by Wnt5a. In addition, Wnt5a increased the nuclear beta-catenin level and treatment with imatinib or ionomycin, either of which blocks the beta-catenin pathway, reduced the anti-apoptotic activity of Wnt5a, together suggesting the simultaneous involvement of the beta-catenin-mediated pathway in the Wnt5a anti-apoptotic activity. Based on another finding indicating that Wnt5a upregulated PKA-mediated phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) at serine 9 that caused inactivation of GSK-3beta and subsequently resulted in activation of the beta-catenin pathway, we have speculated that the Wnt5a anti-apoptotic activity may be partially mediated by PKA-mediated phosphorylation of GSK-3beta and subsequent activation of the beta-catenin pathway.  相似文献   

10.
Two novel, modified thymidine nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), trigger reactive oxygen species (ROS) generation and DNA damage and thereby induce caspase-mediated apoptosis in human HL-60 cells; however, the mechanism leading to caspase activation and apoptotic cell death remains unclear. Therefore, we investigated the signaling molecules involved in nucleoside derivative-induced caspase activation and apoptosis in HL-60 cells. PhSe-T/MeSe-T treatment activated two mitogen-activated protein kinases (MAPKs), extracellular-receptor kinase (ERK) and p38, and induced the phosphorylation of two downstream targets of p38, ATF-2 and MAPKAPK2. In addition, the selective p38 inhibitor SB203580 suppressed PhSe-T/MeSe-T-induced apoptosis and activation of caspase-3, -9, -8, and -2, whereas the jun amino-terminal kinase (JNK) inhibitor SP600125 and the ERK inhibitor PD98059 had no effect. SB203580 and an ROS scavenger, tiron, inhibited PhSe-T/MeSe-T-induced histone H2AX phosphorylation, which is a DNA damage marker. Moreover, tiron inhibited PhSe-T/MeSe-T-induced phosphorylation of p38 and enhanced p38 MAP kinase activity, indicating a role for ROS in PhSe-T/MeSe-T-induced p38 activation. Taken together, our results suggest that PhSe-T/MeSe-T-induced apoptosis is mediated by the p38 pathway and that p38 serves as a link between ROS generation and DNA damage/caspase activation in HL-60 cells.  相似文献   

11.
Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser(9) and, to a lesser extent, Thr(390), the dephosphorylation of p70S6K at Thr(389), and the phosphorylation of p70S6K at Thr(421) and Ser(424). The specific p38 inhibitor SB203080 reduced the p-GSK3β(Ser9) and autophagy through the phosphorylation of p70S6K(Thr389); however, it augmented the levels of p-ERK, p-GSK3β(Thr390), and p-70S6K(Thr421/Ser424) induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK(Ser9)/p70S6K(Thr380) and ERK/GSK3β(Thr390)/p70S6K(Thr421/Ser424) kinase signaling, which is involved in cell survival and cell death.  相似文献   

12.
13.
14.
In the present study, we employed a well established JB6 mouse epithelial cell model to define the molecular mechanism of efficacy of a naturally occurring flavonoid silibinin against ultraviolet B (UVB)-induced skin tumorigenesis. UVB exposure of cells caused a moderate phosphorylation of ERK1/2 and Akt and a stronger phosphorylation of p53 at Ser(15), which was enhanced markedly by silibinin pretreatment. Kinase activity of ERK1/2 for Elk-1 and Akt for glycogen synthase kinase-3beta was also potently enhanced by silibinin pretreatment. Furthermore, silibinin increased the UVB-induced level of cleaved caspase 3 as well as apoptotic cells. Based on these observations, next we investigated the role of upstream kinases, ATM/ATR and DNA-PK, which act as sensors for UVB-induced DNA damage and transduce signals leading to DNA repair or apoptosis. Whereas UVB strongly activated ATM as observed by Ser(1981) phosphorylation, it was not affected by silibinin pretreatment. However, pretreatment of cells with the DNA-protein kinase (PK) inhibitor LY294002 strongly reversed silibinin-enhanced Akt-Ser(473) and p53-Ser(15) as well as ERK1/2 phosphorylation together with a dose-dependent decrease in cleaved caspase 3 and apoptosis (p < 0.05). In addition, silibinin pretreatment strongly enhanced H2A.X-Ser(139) phosphorylation and DNA-PK-associated kinase activity as well as the physical interaction of p53 with DNA-PK; pretreatment of cells with LY294002 but not caffeine abolished the silibinin-caused increase in both DNA-PK activation and p53-Ser(15) phosphorylations. Together, these findings suggest that silibinin preferentially activates the DNA-PK-p53 pathway for apoptosis in response to UVB-induced DNA damage, and that this could be a predominant mechanism of silibinin efficacy against UVB-induced skin cancer.  相似文献   

15.
16.
17.
Glycogen synthase kinase 3beta (GSK3beta) is a key component in many biological processes including insulin and Wnt signaling. Since the activation of each signaling pathway results in a decrease in GSK3beta activity, we examined the specificity of their downstream effects in the same cell type. Insulin induces an increased activity of glycogen synthase but has no influence on the protein level of beta-catenin. In contrast, Wnt increases the cytosolic pool of beta-catenin but not glycogen synthase activity. We found that, unlike insulin, neither the phosphorylation status of the serine9 residue of GSK3beta nor the activity of protein kinase B is regulated by Wnt. Although the decrease in GSK3beta activity is required, GSK3beta may not be the limiting component for Wnt signaling in the cells that we examined. Our results suggest that the axin-conductin complexed GSK3beta may be dedicated to Wnt rather than insulin signaling. Insulin and Wnt pathways regulate GSK3beta through different mechanisms, and therefore lead to distinct downstream events.  相似文献   

18.
This study was to investigate the role of glycogen synthase kinase-3beta (GSK-3beta) in cardiomyocyte tumor necrosis factor-alpha (TNF-alpha) expression induced by lipopolysaccharide (LPS). In cultured neonatal mouse cardiomyocytes, LPS induced TNF-alpha expression and increased GSK-3beta activation. Inhibition of GSK-3beta by SB216763 or by over-expression of a dominant negative mutant of GSK-3beta significantly enhanced TNF-alpha expression in LPS-stimulated cardiomyocytes, in association with an increase in p65 phosphorylation. In contrast, over-expression of GSK-3beta by adenoviral vectors containing wild-type GSK-3beta or a constitutively active GSK-3beta attenuated TNF-alpha expression induced by LPS. Further evidence to support the inhibitory role of GSK-3beta in TNF-alpha expression is that protein kinase B (Akt) signaling, an upstream inhibitor of GSK-3beta, promotes TNF-alpha expression in LPS-stimulated cardiomyocytes and this action of Akt signaling can be mimicked by GSK-3beta inactivation. Our study demonstrates that GSK-3beta plays an inhibitory role in cardiomyocyte TNF-alpha expression during LPS stimulation, and it may be a potential therapeutic target for sepsis.  相似文献   

19.
20.
Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons   总被引:7,自引:0,他引:7  
The aim of this study was to evaluate whether the direct activation of the Wnt signaling pathway by its endogenous Wnt-3a ligand prevents the toxic effects induced by amyloid-beta-peptide (Abeta) in rat hippocampal neurons. We report herein that the Wnt-3a ligand was indeed able to overcome toxic effects induced by Abeta in hippocampal neurons, including a neuronal impairment on cell survival, an increase in glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation, a decrease in cytoplasmic beta-catenin and a decrease in the expression of the Wnt target gene engrailed-1. We further demonstrate that Wnt-3a protects hippocampal neurons from apoptosis induced by Abeta. Our results support the hypothesis that a loss of function of Wnt signaling may play a role in the progression of neurodegenerative diseases such as Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号