首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies that block the ligand binding site of the cation-dependent mannose 6-phosphate specific receptor (Mr 46,000 MPR) were used to probe the function of the receptor in transport of lysosomal enzymes. Addition of the antibodies to the medium of Morris hepatoma 7777 cells, which express only the Mr 46,000 MPR, resulted in a decreased intracellular retention and increased secretion of newly synthesized lysosomal enzymes. In fibroblasts and HepG2 cells that express the cation-independent mannose 6-phosphate specific receptor (Mr 215,000 MPR) in addition to the Mr 46,000 MPR, antibodies against the Mr 46,000 MPR inhibited the intracellular retention of newly synthesized lysosomal enzymes only when added to the medium together with antibodies against the Mr 215,000 MPR. Morris hepatoma (M.H.) 7777 did not endocytose lysosomal enzymes, while U937 monocytes, which express both types of MPR, internalized lysosomal enzymes. The uptake was inhibited by antibodies against the Mr 215,000 MPR, but not by antibodies against the Mr 46,000 MPR. These observations suggest that Mr 46,000 MPR mediates transport of endogenous but not endocytosis of exogenous lysosomal enzymes. Internalization of receptor antibodies indicated that the failure to mediate endocytosis of lysosomal enzymes is due to an inability of surface Mr 46,000 MPR to bind ligands rather than its exclusion from the plasma membrane or from internalization.  相似文献   

2.
Cationic amphiphilic drugs (CADs) cause massive intracellular accumulation of phospholipids, thereby resulting in phospholipidosis (PLD); however, the molecular mechanism underlying CAD-induced PLD remains to be resolved. Here, we found that treatment of normal rat kidney cells with CADs known to induce PLD caused redistribution of a mannose 6-phosphate/IGF-II receptor (MPR300) from the TGN to endosomes and concomitantly increased the secretion of lysosomal enzymes, resulting in a decline of intracellular lysosomal enzyme levels. These results enable the interpretation of why CADs cause excessive accumulation of undegraded substrates, including phospholipids in lysosomes, and led to the conclusion that the impaired MPR300-mediated sorting system of lysosomal enzymes reflects the general mechanism of CAD-induced PLD. In addition, our findings suggest that the measurement of lysosomal enzyme activity secreted into culture medium is useful as a rapid and convenient in vitro early screening system to predict drugs that can induce PLD.  相似文献   

3.
In mammalian cells two mannose 6-phosphate receptors (MPRs) are involved in lysosomal enzyme transport. To understand the precise function of the cation-dependent mannose 6-phosphate receptor (CD-MPR), one allele of the corresponding gene has been disrupted in mouse embryonic stem cells and homozygous mice lacking this receptor have been generated. The homozygous mice appear normal, suggesting that other targeting mechanisms can partially compensate for the loss of the CD-MPR in vivo. However, homozygous receptor-deficient cells and animals clearly exhibit defects in targeting of multiple lysosomal enzymes when compared with wild-types. Increased levels of phosphorylated lysosomal enzymes were present in body fluids of homozygous animals. In thymocytes from homozygous mice or in primary cultures of fibroblasts from homozygous embryos, there is a marked increase in the amount of phosphorylated lysosomal enzymes that are secreted into the extracellular medium. The cultured fibroblasts have decreased intracellular levels of multiple lysosomal enzymes and accumulate macromolecules within their endosomal/lysosomal system. Taken together, these results clearly indicate that the CD-MPR is required for efficient intracellular targeting of multiple lysosomal enzymes.  相似文献   

4.
Delivery of soluble lysosomal proteins to the lysosomes is dependent primarily on the mannose 6-phosphate receptors (MPRs) in mammals. However, in non-mammalian cells the role of MPR300 in sorting and trafficking of acid hydrolases to lysosomes is not fully understood till now. In this paper, we tested the role of MPR300 in sorting and trafficking of lysosomal enzymes in CEF cells using a small interfering RNA (siRNA) technology. Inactivation of MPR300 resulted in the secretion of large amounts of newly synthesized hydrolases into the medium and also inhibited the endocytosis of mannose 6-phospharylated ligands. Knockdown of MPR300 in CEF cells results in missorting of fucosidase and arylsulfatse A enzymes into the medium. The results indicated that the MPR300 in CEF cells plays a key role in sorting and trafficking of these soluble hydrolases.  相似文献   

5.
We have analyzed the interaction of phosphorylated oligosaccharides and lysosomal enzymes with immobilized bovine liver cation-dependent mannose-6-P receptor. Oligosaccharides with phosphomonoesters were the only species that interacted with the receptor, and molecules with two phosphomonoesters showed the best binding. Lysosomal enzymes with several oligosaccharides containing only one phosphomonoester had a higher affinity for the receptor than did the isolated oligosaccharides, indicating the possible importance of multivalent interactions between weakly binding ligands and the receptor. The binding of a mixture of phosphorylated lysosomal enzymes to the cation-dependent Man-6-P receptor was markedly influenced by pH. At pH 6.3, almost all of the lysosomal enzymes bound to the receptor; whereas at pH 7.0-7.5, approximately one-third of the material passed through the column, one-third interacted weakly, and one-third bound tightly. The distribution of individual lysosomal enzyme activities was similar to that of the total material. The species of phosphorylated oligosaccharides present on the lysosomal enzymes which interacted poorly with the receptor were similar to those found on the tightly bound material and included species of oligosaccharides with two phosphomonoester groups. Isolated oligosaccharides of this type bound to the receptor over the entire pH range tested. These findings indicate that at neutral pH the phosphorylated oligosaccharides on some lysosomal enzyme molecules are oriented in a manner which makes them inaccessible to the binding site of the cation-dependent Man-6-P receptor. Since the same enzymes bind to the cation-independent Man-6-P receptor at neutral pH, at least a portion of the phosphomannosyl residues must be exposed. We conclude that small variations in the pH of the Golgi compartment where lysosomal enzymes bind to the receptors could potentially modulate the extent of binding to the two receptors.  相似文献   

6.
Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes.   总被引:13,自引:2,他引:11       下载免费PDF全文
BHK and mouse L cells transfected with the cDNA for the human 46 kd mannose 6-phosphate receptor (MPR 46) secrete excessive amounts of newly synthesized mannose 6-phosphate containing polypeptides. The secretion is dependent on the amount, the recycling and the affinity for ligands of MPR 46. Incubation of transfected cells with antibodies blocking the binding site of MPR 46 reduces the secretion, and cotransfection with the cDNA for the human 300 kd mannose 6-phosphate (MPR 300) restores it to normal values. These results indicate that the two mannose 6-phosphate receptors compete for binding of newly synthesized ligands. In contrast to ligands bound to MPR 300, those bound to the MPR 46 are transported to and released at a site, e.g. early endosomes or plasma membrane, from where they can exit into the medium. Since antibodies blocking the binding site of MPR 46 reduce secretion also in non-transfected BHK and mouse L cells, at least part of the basal secretion of M6P-containing polypeptides is mediated by the endogenous MPR 46.  相似文献   

7.
Summary Immunocytochemistry was used to study the subcellular localization of steroid sulphatase in cultured human fibroblasts. Ultra-thin cryosections were incubated with antibodies raised against steroid sulphatase purified from human placenta and immune complexes were visualized with gold probes as electron dense markers. Steroid sulphatase was found in rough endoplasmic reticulum, Golgi cisternae and in the trans-Golgi reticulum, where it co-distributes with lysosomal enzymes and the mannose 6-phosphate receptor. The enzyme was not detected in lysosomes. Steroid sulphatase was also found at the plasma membrane and in the endocytic pathway (i.e. coated pits, endosomes and multivesicular endosomes). These may be the sites where sulphated oestrogen precursors are hydrolysed. Also here, it co-localizes with lysosomal enzymes and the mannose 6-phosphate receptor. It is concluded that microsomal steroid sulphatase and lysosomal enzymes share several cellular compartments.  相似文献   

8.
Mouse embryonic fibroblasts that are deficient in the two mannose 6- phosphate receptors (MPRs) MPR 46 and MPR 300 missort the majority (> or = 85%) of soluble lysosomal proteins into the medium. Human MPR 46 and MPR 300 were expressed in these cells to test whether overexpression of a single type of MPR can restore transport of lysosomal proteins to lysosomes. Only a partial correction of the missorting was observed after overexpression of MPR 46. Even at MPR 46 levels that are five times higher than the wild-type level, more than one third of the newly synthesized lysosomal proteins accumulates in the secretions. Two-fold overexpression of MPR 300 completely corrects the missorting of lysosomal enzymes. However, at least one fourth of the lysosomal enzymes are transported along a secretion-recapture pathway that is sensitive to mannose 6-phosphate in medium. In control fibroblasts that express both types of MPR, the secretion-recapture pathway is of minor importance. These results imply that neither overexpression of MPR 46 nor MPR 300 is sufficient for targeting of lysosomal proteins along intracellular routes.  相似文献   

9.
The uncovering enzyme (UCE) removes N-acetylglucosamine from lysosomal enzymes to uncover the mannose 6-phosphate (Man-6-P) determinant necessary for targeting these enzymes to lysosomes. Failure to create the Man-6-P determinant is one cause of lysosomal storage diseases. Despite its medical importance, little structural information about UCE is available. In this report we have developed a model for the membrane proximal portion of the lumenal domain of UCE based on the structure of the EFG-3 and -4 domains of the extracellular segment of the beta chain of integrin V 3. In this model the EGF-like domains of UCE (residues 285–345) are predicted to form a rod-shaped stalk region, similar to the stem region in Golgi glycosyltransferases. This stalk causes the proposed catalytic domain (residues 1–277) to be extended away from the Golgi membrane. A portion of the proposed catalytic domain (residues 85-256) resides in Cluster of Orthologous Group (COG) 4632 with four bacterial proteins but is not homologous to any known eukaryotic proteins. Thus, UCE may have evolved from the fusion of a unique catalytic domain with a common EGF-like stalk domain. We have determined by mass spectrometry that the four disulfide bonds of the proposed catalytic domain are located between Cys2–Cys172, Cys66–Cys99, Cys83–Cys274, and Cys258–Cys265. Finally, we determined that four of the six potential N-linked glycosylation sites are glycosylated (Asn 159, Asn 165, Asn 247, and Asn 317) in COS cells. Published in 2005.  相似文献   

10.
P Lobel  K Fujimoto  R D Ye  G Griffiths  S Kornfeld 《Cell》1989,57(5):787-796
The cation-independent mannose 6-phosphate receptor (Cl-MPR) sorts newly synthesized lysosomal enzymes in the Golgi and endocytoses extracellular lysosomal enzymes. To determine the role of the 163 amino acid cytoplasmic domain of the Cl-MPR in these functions, receptor-deficient mouse L cells were transfected with normal bovine Cl-MPR cDNA or cDNAs mutated in the cytoplasmic domain. The normal Cl-MPR functioned in sorting and endocytosis. Mutant receptors with 40 and 89 residues deleted from the carboxyl terminus of the cytoplasmic tail functioned normally in endocytosis, but were partially impaired in sorting. Mutant receptors with larger deletions leaving only 7 and 20 residues of the cytoplasmic tail were defective in endocytosis and sorting. A mutant receptor containing alanine instead of tyrosine residues at positions 24 and 26 was defective in endocytosis, and partially impaired in sorting. Receptors deficient in endocytosis accumulated at the cell surface. These results indicate that the cytoplasmic domain of the Cl-MPR contains different signals for rapid endocytosis and efficient lysosomal enzyme sorting.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2491-2501
The intracellular distributions of the cation-independent mannose 6- phosphate receptor (MPR) and a 120-kD lysosomal membrane glycoprotein (lgp120) were studied in rat hepatoma cells. Using quantitative immunogold cytochemistry we found 10% of the cell's MPR located at the cell surface. In contrast, lgp120 was not detectable at the plasma membrane. Intracellularly, MPR mainly occurred in the trans-Golgi reticulum (TGR) and endosomes. lgp120, on the other hand, was confined to endosomes and lysosomes. MPR was present in both endosomal tubules and vacuoles, whereas lgp120 was confined to the endosomal vacuoles. In cells incubated for 5-60 min with the endocytic tracer cationized ferritin, four categories of endocytic vacuoles could be discerned, i.e., vacuoles designated MPR+/lgp120-, MPR+/lgp120+, MPR-/lgp120+, and vacuoles nonimmunolabeled for MPR and lgp120. Tracer first reached MPR+/lgp120-, then MPR+/lgp120+, and finally MPR-/lgp120+ vacuoles, which are assumed to represent lysosomes. To study the kinetics of appearance of endocytic tracers in MPR-and/or lgp120-containing pools in greater detail, cells were allowed to endocytose horse-radish peroxidase (HRP) for 5-90 min. The reduction in detectability of MPR and lgp120 antigenicity on Western blots, due to treatment of cell homogenates with 3'3-diaminobenzidine, was followed in time. We found that HRP reached the entire accessible pool of MPR almost immediately after internalization of the tracer, while prolonged periods of time were required for HRP to maximally access lgp120. The combined data suggest that MPR+/lgp120+ vacuoles are endocytic vacuoles, intermediate between MPR+/lgp120-endosomes and MPR-/lgp120+ lysosomes, and represent the site where MPR is sorted from lgp120 destined for lysosomes. We propose that MPR is sorted from lgp120 by selective lateral distribution of the receptor into the tubules of this compartment, resulting in the retention of lgp120 in the vacuoles and the net transport of lgp120 to lysosomes.  相似文献   

12.
Polyclonal antibodies to the mannose 6-phosphate specific receptor from human liver inhibited the endocytosis of lysosomal enzymes in fibroblasts by greater than 95% and enhanced 3-20-fold the secretion of precursors of lysosomal enzymes in these cells. Exposing fibroblasts for 4 h to antibody resulted in loss of greater than 90% of the membrane-bound receptors. If fibroblasts were treated with the antibody in the presence of CBZ-Phe-Ala-CHN2, an inhibitor of lysosomal cysteine proteinases, the receptor and smaller degradation products are recovered in dense lysosomes. In treated cells 18-58% of total receptor-related polypeptides were recovered in dense lysosomes. In control cells less than 4% of the receptor was found in the lysosomal fraction. We conclude from these results that normally the receptor is spared from lysosomal degradation. When tagged with antibody, however, the receptor is transported into lysosomes and degraded. The loss of intracellular receptors involved in segregation of newly synthesized lysosomal enzymes indicates an exchange between the former and the plasma membrane-bound receptors.  相似文献   

13.
With the use of immunoelectron microscopy we have demonstrated the presence of lysosomal enzymes (acid alpha-glucosidase and glucocerebrosidase) and fragments of the 270 kDa receptor for mannose 6-phosphate and insulin-like growth factor II in blood plasma, plasmalemmal vesicles of endothelial cells and pericapillary spaces in human skeletal muscle tissue. At these locations, the three proteins colocalized with albumin known to be transported from the capillaries into the pericapillary spaces. Immunoblot analysis of plasma revealed the presence of relatively high molecular weight polypeptides in this material. These observations strongly suggest that high molecular weight species of lysosomal enzymes can pass the endothelial barrier in skeletal muscle tissue.  相似文献   

14.
Intracellular cycling of the cation-dependent mannose 6-phosphate receptor (CD-MPR) between different compartments is directed by signals localized in its cytoplasmic tail. A di-aromatic motif (Phe18-Trp19 with Trp19 as the key residue) in its cytoplasmic tail is required for the sorting of the receptor from late endosomes back to the Golgi apparatus. However, the cation-independent mannose 6-phosphate receptor (CI-MPR) lacks such a di-aromatic motif. Therefore the ability of amino acids other than aromatic residues to replace Trp19 in the CD-MPR cytoplasmic tail was tested. Mutant constructs with bulky hydrophobic residues (valine, isoleucine, or leucine) instead of Trp19 exhibited 30-60% decreases in binding to the tail interacting protein of 47 kDa (Tip47), a protein mediating this transport step, and partially prevented receptor delivery to lysosomes. Decreasing hydrophobicity of residues at position 19 resulted in further impairment of Tip47 binding and an increase of receptor accumulation in lysosomes. Intriguingly, mutants mislocalized to lysosomes did not completely co-localize with a lysosomal membrane protein, which might suggest the presence of subdomains within lysosomes. These data indicate that sorting of the CD-MPR in late endosomes requires a distinct di-aromatic motif with only limited possibilities for variations, in contrast to the CI-MPR, which seems to require a putative loop (Pro49-Pro-Ala-Pro-Arg-Pro-Gly55) along with additional hydrophobic residues in the cytoplasmic tail. This raises the possibility of two separate binding sites on Tip47 because both receptors require binding to Tip47 for endosomal sorting.  相似文献   

15.
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR.  相似文献   

16.
Disruption of latent TGF-beta binding protein (LTBP)-4 expression in the mouse leads to abnormal lung development and colorectal cancer. Lung fibroblasts from these mice produced decreased amounts of active TGF-beta, whereas secretion of latent TGF-beta was significantly increased. Expression and secretion of TGF-beta2 and -beta3 increased considerably. These results suggested that TGF-beta activation but not secretion would be severely impaired in LTBP-4 -/- fibroblasts. Microarrays revealed increased expression of bone morphogenic protein (BMP)-4 and decreased expression of its inhibitor gremlin. This finding was accompanied by enhanced expression of BMP-4 target genes, inhibitors of differentiation 1 and 2, and increased deposition of fibronectin-rich extracellular matrix. Accordingly, increased expression of BMP-4 and decreased expression of gremlin were observed in mouse lung. Transfection of LTBP-4 rescued the -/- fibroblast phenotype, while LTBP-1 was inefficient. Treatment with active TGF-beta1 rescued BMP-4 and gremlin expression to wild-type levels. Our results indicate that the lack of LTBP-4-mediated targeting and activation of TGF-beta1 leads to enhanced BMP-4 signaling in mouse lung.  相似文献   

17.
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain.  相似文献   

18.
The mannose 6-phosphate/insulin-like growth factor-II (Man-6-P/IGF-II) receptor is known to cycle between the Golgi, endosomes, and the plasma membrane. In the Golgi the receptor binds newly synthesized lysosomal enzymes and transports them directly to an endosomal (prelysosomal) compartment without traversing the plasma membrane. Deletion of the carboxyl-terminal Leu-Leu-His-Val residues of the 163 amino acid cytoplasmic tail of the bovine Man-6-P/IGF-II receptor partially impaired this function, resulting in the diversion of a portion of the receptor-ligand complexes to the cell surface, where they were endocytosed. The same phenotype was observed when 134 residues of the cytoplasmic tail were deleted from the carboxyl terminus. Disruption of the Tyr24-Lys-Tyr-Ser-Lys-Val29 plasma membrane internalization signal alone had little effect on Golgi sorting, but when combined with either deletion resulted in a complete loss of this function. The mutant receptors retained the ability to recycle to the Golgi and bind cathepsin D. These results indicate that the cytoplasmic tail of the Man-6-P/IGF-II receptor contains two signals that contribute to Golgi sorting, presumably by interacting with the Golgi clathrin-coated pit adaptor proteins. The Leu-Leu-containing sequence represents a novel motif for mediating interaction with Golgi adaptor proteins.  相似文献   

19.
The mannose 6-phosphate (Man6P) residues that are necessary for the targeting of newly synthesized lysosomal proteins are dephosphorylated after delivery of lysosomal proteins to lysosomes. To examine the role of lysosomal acid phosphatase (LAP) for the dephosphorylation of Man6P residues in lysosomal proteins, the phosphorylation of endogenous lysosomal proteins and of internalized arylsulfatase A was analyzed in mouse L-cells that overexpress human LAP. Non-transfected L-cells dephosphorylate endogenous lysosomal proteins slowly (half time approximately 13 h) as well as internalized arylsulfatase A. A more than 100-fold overexpression of LAP in these cells did not affect the dephosphorylation rate. Control experiments showed that the internalized arylsulfatase A and overexpressed LAP partially colocalize and that under in vitro conditions purified LAP does not dephosphorylate arylsulfatase A. Taken together, these results indicate that LAP is not the mannose 6-phosphatase that dephosphorylates lysosomal proteins after their delivery to lysosomes.  相似文献   

20.
The effects of chloroquine and mannose 6-hosphate on the secretion and uptake of the lysosomal enzyme, beta-N-acetylglucosaminidase (EC 3.2.1.30), by human fibroblasts have been compared. There was a reciprocal relationship between intracellular depletion, and extracellular accumulation, of enzyme at chloroquine concentrations ranging from 5 micrometers to 100 micrometers. A loss of enzyme activity from the system (intra- plus extracellular activity) with increasing concentrations of chloroquine was due to inhibition of the beta-N-acetylglucosaminidase. At a concentration of 50 micrometers, chloroquine elicited a three fold increase in the extracellular accumulation of beta-N-acetylglucosaminidase in 24 h whereas the addition of 5 micrometers mannose 6-phosphate (a competitive inhibitor of receptor-mediated uptake) resulted in only a 13% increase. Uptake of beta-N-acetylglucosaminidase by enzyme-deficient fibroblasts was completely inhibited by 5 micrometers mannose 6-phosphate. In the presence of chloroquine there was also no uptake of enzyme, however ther was a marked decrease in the residual activity of the cells. The results suggest that the effect of chloroquine on fibroblasts is to stimulate secretion rather than to inhibit uptake as previously reported. The isoenzyme pattern of the beta-N-acetylglucosaminidase from normal culture medium was compared with that accumulating in the medium following exposure of the cells to 50 micrometers chloroquine. In the presence of chloroquine, there was an increase in the A isoenzyme, however the activity was eluted in a broad peak which probably represents several closely related forms of the enzyme. There was an almost total loss of the A isoenzyme of beta-N-acetylglucosaminidase from fibroblasts cultured in the presence of chloroquine. A small peak of activity eluting at a similar position to the secreted, As, isoenzyme was present in extracts of chloroquine-treated fibroblasts, suggesting that the As isoenzyme is formed and/or stored at a site distinct from the intracellular isoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号