首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The 120-fold purification of ethanolamine ammonia-lyase from Escherichia coli extracts, to apparent homogeneity, is described. Ethanolamine, dithiothreitol, glycerol and KCl protected the apoenzyme from inactivation. 2. At the optimum pH7.5, K(m) values for ethanolamine and coenzyme B(12) were 44mum and 0.42mum respectively. The K(m) for ethanolamine was markedly affected by pH, transitions occurring at pH7.0 and 8.35. 3. The enzyme was specific for ethanolamine as substrate, none of the 18 analogues tested being active. l-2-Aminopropan-l-ol (K(i) 0.86mum), dl-1-aminopropan-2-ol (K(i) 2.2mum) and dl-1,3-diaminopropan-2-ol (K(i) 88.0mum) inhibited competitively. 4. Enzyme activity was inhibited, irreversibly and non-competitively, by the coenzyme analogues methylcobalamin (K(i) 1.4nm), hydroxocobalamin (K(i) 2.1nm) and cyanocobalamin (K(i) 4.8nm). 5. Iodoacetamide inhibited in the absence of ethanolamine, but only slightly in its presence. p-Hydroxymercuribenzoate inhibited markedly even in the presence of ethanolamine. Dithiothreitol and 2-mercaptoethanol (less effectively) restored activity to the enzyme dialysed against buffer containing ethanolamine. 6. Although K(+) ions stabilized the enzyme during dialysis or storage, they were not necessary for activity. 7. Gel filtration showed the enzyme to be of high molecular weight, ultracentrifugal studies giving s(20,w) of 16.4 and an estimated mol.wt. 560400. The isoelectric point for the apoenzyme was approx. pH5.0. inhibited enzyme activity at concentrations above 1m (95% inhibition at 3m) and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated protein subunits of mol.wt. 61400. 8. Immunological studies showed that the E.coli enzyme was closely related to those of other enterobacteria, but only distantly to that of Clostridium sp. A double precipitin band suggested that the apoenzyme may be made up of two protein components.  相似文献   

2.
Cleavage of choline to trimethylamine and acetaldehyde by extracts of Proteus mirabilis requires both particulate and soluble protein fractions, K+, and a bound divalent metal cation. The reaction shows a long lag period, abolished only by preincubation of the particulate fraction in the complete reaction system. The two-carbon fragment produced is acetaldehyde; choline cleavage appears to be tightly coupled to dismutation of the acetaldehyde to ethanol and acetate, as indicated by stimulation by NAD+, ADP, and Fe2+ and inhibition by reagents reacting with acetaldehyde. The system is thus similar to that previously described in anaerobes (Desulfovibrio, Clostridium). Attempts to demonstrate a cobamide coenzyme requirement (as in the similar ethanolamine ammonia-lyase reaction) were unsuccessful; the reaction was carried out by fractions devoid of vitamin B12 activity (not supporting growth of Lactobacillus leichmannii) and insensitive to light.  相似文献   

3.
Ethanolamine is deaminated by the action of ethanolamine ammonia-lyase (EC 4.3.1.7), an adenosylcobalamin-dependent enzyme. Consequently, to grow on ethanolamine as a sole nitrogen source, Bacillus megaterium requires vitamin B12. Identification of B. megaterium mutants deficient for growth on ethanolamine as the sole nitrogen source yielded a total of 34 vitamin B12 auxotrophs. The vitamin B12 auxotrophs were divided into two major phenotypic groups: Cob mutants, which could use cobinamide or vitamin B12 to grow on ethanolamine, and Cbl mutants, which could be supplemented only by vitamin B12. The Cob mutants were resolved into six classes and the Cbl mutants were resolved into three, based on the spectrum of cobalt-labeled corrinoid compounds which they accumulated. Although some radiolabeled cobalamin was detected in the wild type, little or none was evident in the auxotrophs. The results indicate that Cob mutants contain lesions in biosynthetic steps before the synthesis of combinamide, while Cbl mutants are defective in the conversion of cobinamide to cobalamin. Analysis of phage-mediated transduction experiments revealed tight genetic linkage within the Cob class and within the Cbl class. Similar transduction analysis indicated the Cob and Cbl classes are weakly linked. In addition, cross-feeding experiments in which extracts prepared from mutants were examined for their effect on growth of various other mutants allowed a partial ordering of mutations within the cobalamin biosynthetic pathway.  相似文献   

4.
Sun L  Warncke K 《Proteins》2006,64(2):308-319
The structure of the EutB protein from Salmonella typhimurium, which contains the active site of the coenzyme B12 (adenosylcobalamin)-dependent enzyme, ethanolamine ammonia-lyase, has been predicted by using structural proteomics techniques of comparative modelling. The 453-residue EutB protein displays no significant sequence identity with proteins of known structure. Therefore, secondary structure prediction and fold recognition algorithms were used to identify templates. Multiple three-dimensional template matching (threading) servers identified predominantly beta8alpha8, TIM-barrel proteins, and in particular, the large subunits of diol dehydratase (PDB: 1eex:A, 1dio:A) and glycerol dehydratase (PDB: 1mmf:A), as templates. Consistent with this identification, the dehydratases are, like ethanolamine ammonia-lyase, Class II coenzyme B12-dependent enzymes. Model building was performed by using MODELLER. Models were evaluated by using different programs, including PROCHECK and VERIFY3D. The results identify a beta8alpha8, TIM-barrel fold for EutB. The beta8alpha8, TIM-barrel fold is consistent with a central role of the alpha/beta-barrel structures in radical catalysis conducted by the coenzyme B12- and S-adenosylmethionine-dependent (radical SAM) enzyme superfamilies. The EutB model and multiple sequence alignment among ethanolamine ammonia-lyase, diol dehydratase, and glycerol dehydratase from different species reveal the following protein structural features: (1) a "cap" loop segment that closes the N-terminal region of the barrel, (2) a common cobalamin cofactor binding topography at the C-terminal region of the barrel, and (3) a beta-barrel-internal guanidinium group from EutB R160 that overlaps the position of the active-site potassium ion found in the dehydratases. R160 is proposed to have a role in substrate binding and radical catalysis.  相似文献   

5.
6.
1. Pseudomonas sp. N.C.I.B. 8858 grew well on d- and l-1-aminopropan-2-ol and on aminoacetone. 2. Cell-free extracts possessed high activities of inducibly formed l-1-aminopropan-2-ol-NAD(+) oxidoreductase, amino alcohol-ATP phosphotransferase, dl-1-aminopropan-2-ol O-phosphate phospho-lyase and aldehyde-NAD(+) oxidoreductase, but no 1-aminopropan-2-ol racemase or d-1-aminopropan-2-ol-NAD(+) oxidoreductase. 3. The amino alcohol kinase (activated by ADP) was non-stereospecific towards 1-aminopropan-2-ol and was one-third as active with ethanolamine. The phospho-lyase was active with l- and d-1-aminopropan-2-ol O-phosphate, but ethanolamine O-phosphate was only one-tenth as active as its higher homologues. The purified aldehyde dehydrogenase was active with propionaldehyde, acetaldehyde and also with methylglyoxal. The previously observed 2-oxo aldehyde dehydrogenase activity was considered to be due to the broadly specific aldehyde dehydrogenase. 4. Mutants of Pseudomonas sp. N.C.I.B. 8858 deficient in 1-aminopropan-2-ol kinase, 1-aminopropan-2-ol O-phosphate phospho-lyase, aldehyde dehydrogenase or an enzyme involved in propionate metabolism were incapable of growth on aminoacetone or 1-aminopropan-2-ol as carbon source, although all except the kinase- or phospho-lyasedeficient mutants could use these compounds and ethanolamine as nitrogen sources. The aldehyde dehydrogenase-deficient mutants produced copious amounts of propionaldehyde and acetaldehyde during growth on the corresponding amino alcohols. 5. The path of aminoacetone metabolism in Pseudomonas sp. N.C.I.B. 8858 was concluded to involve l-1-aminopropan-2-ol, the O-phosphate ester of this compound, propionaldehyde and propionate as obligatory intermediates. d-1-Aminopropan-2-ol was metabolized by the same route as the l-isomer, gratuitously inducing formation of the stereospecific l-1-aminopropan-2-ol dehydrogenase. 6. Extracts of the pseudomonad grown with ethanolamine as the nitrogen source were devoid of 1-aminopropan-2-ol dehydrogenase, the kinase and the phospho-lyase, but exhibited cobamide coenzyme-dependent deaminase activity. Mutants deficient in kinase or phospho-lyase (deaminating) grew well on ethanolamine as the nitrogen source. Ethanolamine deaminase was inactive with, but inhibited by, 1-aminopropan-2-ol.  相似文献   

7.
Lactobacillus reuteri CRL1098 produces cobalamin   总被引:1,自引:0,他引:1       下载免费PDF全文
We found that Lactobacillus reuteri CRL1098, a lactic acid bacterium isolated from sourdough, is able to produce cobalamin. The sugar-glycerol cofermentation in vitamin B(12)-free medium showed that this strain was able to reduce glycerol through a well-known cobalamin-dependent reaction with the formation of 1,3-propanediol as a final product. The cell extract of L. reuteri corrected the coenzyme B12 requirement of Lactobacillus delbrueckii subsp. lactis ATCC 7830 and allowed the growth of Salmonella enterica serovar Typhimurium (metE cbiB) and Escherichia coli (metE) in minimal medium. Preliminary genetic studies of cobalamin biosynthesis genes from L. reuteri allowed the identification of cob genes which encode the CobA, CbiJ, and CbiK enzymes involved in the cobalamin pathway. The cobamide produced by L. reuteri, isolated in its cyanide form by using reverse-phase high-pressure liquid chromatography, showed a UV-visible spectrum identical to that of standard cyanocobalamin (vitamin B12).  相似文献   

8.
The activities of the enzymes ethanolamine ammonia-lyase, CoA-dependent and CoA-independent aldehyde dehydrogenases, and isocitrate lyase were assayed in Escherichia coli which had been grown on various sources of carbon and nitrogen. Induction of ethanolamine ammonia-lyase and of maximal levels of both aldehyde dehydrogenases required the concerted effects of ethanolamine and vitamin (or coenzyme) B12. Molecular exclusion chromatography revealed that, in the absence of one or both co-inducers, two repressible isoenzymes of CoA-dependent aldehyde dehydrogenase (mol. wts 900000 and 120000) were produced, these being replaced by two inducible isoenzymes (mol. wts 520000 and 370000) in the presence of both co-inducers. A similar inducible repressible series of isoenzymes was also observed for CoA-independent aldehyde dehydrogenase. No evidence was found for structural relationships between ethanolamine ammonia-lyase, CoA-dependent aldehyde dehydrogenase and CoA-independent aldehyde dehydrogenase, but mutant and physiological studies demonstrated that the induction of the first two enzymes is under common control. Evidence is presented for the operation of a previously unreported pathway of ethanolamine metabolism in E. coli.  相似文献   

9.
Ethanolamine utilization in Salmonella typhimurium.   总被引:20,自引:16,他引:4       下载免费PDF全文
  相似文献   

10.
Ethanolamine ammonia-lyase is an adenosylcobalamin-dependent enzyme that catalyzes the rearrangement of ethanolamine and other vicinal amino alcohols to oxo-compounds and ammonia. Treatment of this enzyme with the sulfhydryl group-blocking reagent methyl methanethiosulfonate produces a species with diminished catalytic activity. When methyl methanethiosulfonate -treated ethanolamine ammonia-lyase was incubated with a carboxyl-blocking reagent consisting of glycine ethyl ester plus a water-soluble carbodiimide, the enzyme lost more than 80% of its residual activity, while at the same time glycine ethyl ester was incorporated into it at a stoichiometry of 6 mol/mol of enzyme. Both the loss of activity and the incorporation of glycine ethyl ester were prevented if ethanolamine was included in the glycine ethyl ester-containing incubation mixture. These results suggest that an active site carboxyl group plays a role in the mechanism of catalysis by ethanolamine ammonia-lyase, and that this carboxyl group is amidated when the enzyme is incubated with glycine ethyl ester plus carbodiimide.  相似文献   

11.
Bandarian V  Reed GH 《Biochemistry》2000,39(39):12069-12075
Transient phases of the reaction catalyzed by ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been investigated by stopped-flow visible spectrophotometry and deuterium kinetic isotope effects. The cleavage of adenosylcobalamin (coenzyme B(12)) to form cob(II)alamin (B(12r)) with ethanolamine as the substrate occurred within the dead time of the instrument whenever coenzyme B(12) was preincubated with enzyme prior to mixing with substrate. The rate was, however, slowed sufficiently to be measured with perdeutero ethanolamine as the substrate. Optical spectra indicate that, during the steady states of the reactions with ethanolamine and with S-2-aminopropanol as substrates, approximately 90% of the active sites contain B(12r). Reformation of the carbon-cobalt bond of the cofactor occurs following depletion of substrate in the reaction mixtures, and the rate constant for this process reflects k(cat) of the respective substrates. This late phase of the reaction also exhibits (2)H isotope effects similar to those measured for the overall reaction with (2)H-labeled substrates. With unlabeled substrates, the rate of cofactor reassembly is independent of the number of substrate molecules turned over in the steady-state phase. However, with (2)H-labeled substrates, kinetic isotope effects appear in the reassembly phase, and these isotope effects are maximal after only approximately 2 equiv of substrate/active site are processed. With 5'-deuterated coenzyme B(12) and deuterated substrate, the isotope effect on reassembly is independent of the number of substrate molecules that are turned over. These results indicate that the pool of exchangeable hydrogens in the enzyme-cofactor complex is two-a finding consistent with the hydrogens in the C5' methylene of coenzyme B(12).  相似文献   

12.
Ethanolamine ammonia-lyase (EC 4.3.1.7) catalyzes the adenosylcobalamin-dependent deamination of ethanolamine and 2-aminopropanol. Incubation of the enzyme.cofactor complex with 2-aminoacetaldehyde leads to rapid cleavage of the carbon--cobalt bond accompanied by the destruction of the corrinoid portion of the cofactor. During this reaction the adenosyl portion of the cofactor is oxidized to 4',5'-anhydroadenosine, and the aminoacetaldehyde is converted to acetic acid, which remains associated with the enzyme as a noncovalent complex which survives gel filtration. There is no evidence for the alkylation of the corrin metal by the substrate analog. The enzyme.AdoCbl complex is thus able to eliminate an amino group from a substrate analog without the formation of a new alkyl cobalamin in which the analog is a ligand. These observations do not support the participation of what might be termed "substratylcobalamin" as an intermediate in the ammonia migration occurring in reactions catalyzed by ethanolamine ammonia-lyase.  相似文献   

13.
Ethanolamine ammonia-lyase is a bacterial enzyme that catalyzes the adenosylcobalamin-dependent conversion of certain vicinal amino alcohols to oxo compounds and ammonia. Studies of ethanolamine ammonia-lyase from Clostridium sp. and Escherichia coli have suggested that the enzyme is a heterodimer composed of subunits of Mr approximately 55,000 and 35,000. Using a partial Sau3A Salmonella typhimurium library ligated into pBR328 and selecting by complementation of a mutant lacking ethanolamine ammonia-lyase activity, we have cloned the genes for the 2 subunits of the S. typhimurium enzyme. The genes were localized to a 6.5-kilobase fragment of S. typhimurium DNA, from which they could be expressed in E. coli under noninducing conditions. Sequencing of a 2526-base pair portion of this 6.5-kilobase DNA fragment revealed two open reading frames separated by 21 base pairs. The open reading frames encoded proteins of 452 and 286 residues whose derived N-terminal sequences were identical to the N-terminal sequences of the 2 subunits of the E. coli ethanolamine ammonia-lyase, except that residue 16 of the large subunit was asparagine in the E. coli sequence and aspartic acid in the S. typhimurium sequence.  相似文献   

14.
Ethanolamine kinase was purified 60-fold by fractionation with ammonium sulfate, freeze-thawing, and gel filtration from a 100,000g supernatant from spinach leaf. The 100,00g supernatant preparation was stable for weeks, but the partially purified preparation lost half of the ethanolamine kinase activity in 10–14 days at 0–4 °C or ?20 °C. A molecular weight of 110,000 was estimated by gel filtration on Sephadex G-200. The reaction required ethanolamine (Km, 42 μm), MgATP (Km, 63 μm), and free magnesium ions. The enzyme was inhibited by MgATP, with an apparent Ki of 6.7 mm. Ethanolamine kinase was inhibited by calcium (in the presence of magnesium) and o-phenanthroline. EDTA above 0.9 mm inhibited the formation of phosphorylethanolamine and EGTA stimulated at low concentrations (0.4-0.9 mm) and inhibited at 1.8 mm. Ethanolamine kinase was inhibited by monomethylethanolamine and dimethylethanolamine, but not by choline (5 mm). The ethanolamine kinase and choline kinase activities of the 100,000g supernatant preparation could be separated by gel electrophoresis  相似文献   

15.
Ethanolamine ammonia-lyase (EAL, EC 4.3.1.7) catalyzes a coenzyme B(12)-dependent deamination of vicinal amino alcohols. The mode of binding of coenzyme B(12) to EAL has been investigated by electron paramagnetic resonance spectroscopy (EPR) using [(15)N]-dimethylbenzimidazole-coenzyme B(12). EAL was incubated with either unlabeled or (15)N-enriched coenzyme B(12) and then either exposed to light or treated with ethanol to generate the cleaved form of the cofactor, cob(II)alamin (B(12r)) bound in the active site. The reaction mixtures were examined by EPR spectroscopy at 77 K. (15)N superhyperfine splitting in the EPR signals of the low-spin Co(2+) of B(12r), bound in the active site of EAL, indicates that the dimethylbenzimidazole moiety of the cofactor contributes the lower axial ligand consistent with "base-on" binding of coenzyme B(12) to EAL.  相似文献   

16.
Ethanolamine ammonia-lyase is an adenosylcobalamin-dependent enzyme which catalyzes the conversion of ethanolamine and propanolamine to ammonia and the corresponding aldehydes. A mechanism has been proposed for this and other adenosylcobalamin-dependent reactions which involves cleavage of the carbon-cobalt bond of the cofactor followed by abstraction of a substrate hydrogen atom by the adenosyl fragment to form 5'-deoxyadenosine. In support of this proposal, a previous study demonstrated that the deamination of propanolamine by ethanolamine ammonia-lyase is accompanied by the reversible cleavage of the carbon-cobalt bond of the cofactor, with the production of 5'-deoxyadenosine (Babior, B.M., Carty, T.J., and Abeles, R.H. (1974) J. Biol. Chem. 249, 1689-1695). The present study is concerned with the origin of the third hydrogen atom on the methyl group of the 5'-deoxyadenosine produced in that reaction. The 5'-deoxyadenosine isolated from an incubation mixture initially containing enzyme, [5',5'-D2]adenosylcobalamin, and [1,1-D2]propanolamine was chemically degraded so that the 4' and 5' carbon atoms were, respectively, converted to the carbonyl and methyl carbons of acetaldehyde. Analysis of the p-nitrophenylhydrazone of the acetaldehyde by gas-liquid chromatography-mass spectroscopy revealed 3 deuterium atoms/molecule, indicating that two of the methyl hydrogens originated from adenosylcobalamin and the third was donated by substrate. This observation provides further support for the participation of 5'-deoxyadenosine in the mechanism of adenosylcobalamin-dependent reactions.  相似文献   

17.
(2-Amino-5, 6-dimethylbenzimidazolyl)-cobamide (III) is transformed to (2-hydroxy-5, 6-dimethylbenzimidazolyl) cobamide (IV) by nitrous acid. Exchange of the NH2-group by hydrogen with nitrous acid/hypophosphorous acid yields vitamin B12 (I). This reaction completes a cycle vitamin B12 (I)----[carboxy(2-cyanoamino-4,5-dimethylphenyl)amino]cobamide+ ++ (II)----(2-amino-5,6-dimethylbenzimidazolyl)cobamide (III)----vitamin B12 (I), which allows chemical 14C-labelling of vitamin B12. In this procedure cyanogen bromide, which is necessary for the first step, was labelled with [14C] cyanide. By the following reactions a vitamin B12 was formed in which C-2 of the 5, 6-dimethylbenzimidazole moiety is labelled.  相似文献   

18.
We have proposed that the "doublet" EPR spectra observed during catalysis by a number of coenzyme B12-requiring enzymes arises from a weak electrostatic exchange interaction between an organic free radical and low spin Co(II), B12r. By varying the magnitude of the exchange of coupling we have quite accurately simulated the published EPR spectra from the enzyme systems: diol dehydrase, glycerol dehydrase, ribonucleotide reductase, and ethanolamine ammon-ia lyase. A dipolar model was shown to be incompatible with the observed properties of these systems.  相似文献   

19.
The role of serine as a precursor and metabolic regulator for phosphatidylethanolamine biosynthesis in the hamster heart was investigated. Hearts were perfused with 50 microM [1-3H]ethanolamine in the presence or absence of serine for up to 60 min. Ethanolamine uptake was attenuated by 0.05-10 mM serine in a noncompetitive manner, and the incorporation of labeled ethanolamine into phosphatidylethanolamine was also inhibited by serine. Analysis of the ethanolamine-containing metabolites in the CDP-ethanolamine pathway revealed that the conversion of ethanolamine to phosphoethanolamine was reduced. The reduction was a result of an inhibition of ethanolamine kinase activity by an elevated pool of intracellular serine. Perfusion of the heart with 1 mM serine caused a 5-fold increase in intracellular serine pool. In order to examine the action of serine on other phosphatidylethanolamine metabolic pathways, hearts were perfused with [1-3H]glycerol in the presence and absence of serine. Serine did not cause any enhancement of phosphatidylethanolamine hydrolysis. The base-exchange reaction for phosphatidylserine formation or the decarboxylation of phosphatidylserine was not affected by serine perfusion. We conclude that circulating serine plays an important role in the modulation of phosphatidylethanolamine biosynthesis via the CDP-ethanolamine pathway in the hamster heart but does not affect the contribution of the decarboxylase pathway for phosphatidylethanolamine formation.  相似文献   

20.
The roles of the D-ribosyl moiety and the bulky axial ligand of the nucleotide loop of adenosylcobalamin in coenzymic function have been investigated using two series of coenzyme analogs bearing various artificial bases. The 2-methylbenzimidazolyl trimethylene analog that exists exclusively in the base-off form was a totally inactive coenzyme for diol dehydratase and served as a competitive inhibitor. The benzimidazolyl trimethylene analog and the benzimidazolylcobamide coenzyme were highly active for diol dehydratase and ethanolamine ammonia-lyase. The imidazolylcobamide coenzyme was 59 and 9% as active as the normal coenzyme for diol dehydratase and ethanolamine ammonia-lyase, respectively. The latter analog served as an effective suicide coenzyme for both enzymes, although the partition ratio (k(cat)/k(inact)) of 630 for ethanolamine ammonia-lyase is much lower than that for diol dehydratase. Suicide inactivation was accompanied by the accumulation of a cob(II)amide species, indicating irreversible cleavage of the coenzyme Co-C bond during the inactivation. It was thus concluded that the bulkiness of a Co-coordinating base of the nucleotide loop is essential for both the initial activity and continuous catalytic turnovers. Since the k(cat)/k(inact) value for the imidazolylcobamide in diol dehydratase was 27-times higher than that for the imidazolyl trimethylene analog, it is clear that the ribosyl moiety protects the reaction intermediates from suicide inactivation. Stopped-flow measurements indicated that the rate of Co-C bond homolysis is essentially unaffected by the bulkiness of the Co-coordinating base for diol dehydratase. Thus, it seems unlikely that the Co-C bond is labilized through a ground state mechanochemical triggering mechanism in diol dehydratase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号