首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During early development, specific mRNAs receive poly(A) in the cytoplasm. This cytoplasmic polyadenylation reaction correlates with, and in some cases causes, translational stimulation. Previously, it was suggested that a factor similar to the multisubunit nuclear cleavage and polyadenylation specificity factor (CPSF) played a role in cytoplasmic polyadenylation. A cDNA encoding a cytoplasmic form of the 100-kDa subunit of Xenopus laevis CPSF has now been isolated. The protein product is 91% identical at the amino acid sequence level to nuclear CPSF isolated from Bos taurus thymus. This report provides three lines of evidence that implicate the X. laevis homologue of the 100-kDa subunit of CPSF in the cytoplasmic polyadenylation reaction. First, the protein is predominantly localized to the cytoplasm of X. laevis oocytes. Second, the 100-kDa subunit of X. laevis CPSF forms a specific complex with RNAs that contain both a cytoplasmic polyadenylation element (CPE) and the polyadenylation element AAUAAA. Third, immunodepletion of the 100-kDa subunit of X. laevis CPSF reduces CPE-specific polyadenylation in vitro. Further support for a cytoplasmic form of CPSF comes from evidence that a putative homologue of the 30-kDa subunit of nuclear CPSF is also localized to the cytoplasm of X. laevis oocytes. Overexpression of influenza virus NS1 protein, which inhibits nuclear polyadenylation through an interaction with the 30-kDa subunit of nuclear CPSF, prevents cytoplasmic polyadenylation, suggesting that the cytoplasmic X. laevis form of the 30-kDa subunit of CPSF is involved in this reaction. Together, these results indicate that a distinct, cytoplasmic form of CPSF is an integral component of the cytoplasmic polyadenylation machinery.  相似文献   

2.
Regulated mRNA translation is a hallmark of oocytes and early embryos, of which cytoplasmic polyadenylation is a major mechanism. This process involves multiple protein components, including the CPSF (cleavage and polyadenylation specificity factor), which is also required for nuclear polyadenylation. The CstF (cleavage stimulatory factor), with CPSF, is required for the pre-mRNA cleavage before nuclear polyadenylation. However, some evidence suggests that the CstF-77 subunit might have a function independent of nuclear polyadenylation, which could be related to the cell cycle. As such, we addressed the question whether CstF-77 might have a role in cytoplasmic polyadenylation. We investigated the function of the CstF-77 protein in Xenopus oocytes, and show that CstF-77 has indeed a role in the cytoplasm. The Xenopus CstF-77 protein (X77K) localizes mainly to the nucleus, but also in punctuate cytoplasmic foci. We show that X77K resides in a cytoplasmic complex with eIF4E, CPEB (cytoplasmic polyadenylation element-binding protein), CPSF-100 and XGLD2, but is not required for cytoplasmic polyadenylation per se. Impairment of X77K function in ovo leads to an acceleration of the G(2)/M transition, with a premature synthesis of Mos and AuroraA proteins. However, the kinetic of Mos mRNA polyadenylation is not modified. Furthermore, X77K represses mRNA translation in vitro. These results suggest that X77K could be involved in masking of mRNA prior to polyadenylation.  相似文献   

3.
Eukaryotic pre-mRNA 3′-end formation is catalyzed by a complex set of factors that must be intricately regulated. In this study, we have discovered a novel role for the small ubiquitin-like modifier SUMO in the regulation of mammalian 3′-end processing. We identified symplekin, a factor involved in complex assembly, and CPSF-73, an endonuclease, as SUMO modification substrates. The major sites of sumoylation in symplekin and CPSF-73 were determined and found to be highly conserved across species. A sumoylation-deficient mutant was defective in rescuing cell viability in symplekin small interfering RNA (siRNA)-treated cells, supporting the importance of this modification in symplekin function. We also analyzed the involvement of sumoylation in 3′-end processing by altering the sumoylation status of nuclear extracts. This was done by the addition of a SUMO protease, which we show interacts with both symplekin and CPSF-73, or by siRNA-mediated depletion of ubc9, the SUMO E2-conjugating enzyme. Both treatments resulted in a marked inhibition of processing. The assembly of a functional polyadenylation complex was also impaired by the SUMO protease. Our identification of two key polyadenylation factors as SUMO targets and of the role of SUMO in enhancing the assembly and activity of the 3′-end-processing complex together reveal an important function for SUMO in the processing of mRNA precursors.  相似文献   

4.
During the meiotic maturation of Xenopus oocytes, maternal mRNAs that lack a cytoplasmic polyadenylation element are deadenylated and translationally inactivated. In this report, we have characterized the regulation of poly(A) removal during maturation. Deadenylation in vivo is detected only after germinal vesicle breakdown and does not require de novo protein synthesis. Enucleated oocytes do not deadenylate either endogenous or microinjected RNAs upon maturation, indicating that a nuclear component is required for poly(A) removal. Whole cell extracts prepared from both immature and mature oocytes deadenylate exogenous RNA substrates in vitro. Deadenylation activity is not detected in isolated nuclear or cytoplasmic extracts obtained from immature oocytes, but is reconstituted when these fractions are combined in vitro. These results indicate that the factors required for deadenylation activity are present in immature oocytes, but that poly(A) removal is prevented by the sequestration of one or more of these components within the nucleus. Maturation-specific deadenylation of maternal mRNAs occurs upon the release of nuclear factors into the cytoplasm at germinal vesicle breakdown.  相似文献   

5.
Poly(A) can be added to mRNAs both in the nucleus and in the cytoplasm. During oocyte maturation and early embryonic development, cytoplasmic polyadenylation of preexisting mRNAs provides a common mechanism of translational control. In this report, to begin to understand the regulation of polyadenylation activities during early development, we analyze poly (A) polymerases (PAPs) in oocytes and early embryos of the frog, Xenopus laevis. We have cloned and sequenced a PAP cDNA that corresponds to a maternal mRNA present in frog oocytes. This PAP is similar in size and sequence to mammalian nuclear PAPs. By immunoblotting using monoclonal antibodies raised against human PAP, we demonstrate that oocytes contain multiple forms of PAP that display different electrophoretic mobilities. The oocyte nucleus contains primarily the slower migrating forms of PAP, whereas the cytoplasm contains primarily the faster migrating species. The nuclear forms of PAP are phosphorylated, accounting for their retarded mobility. During oocyte maturation and early postfertilization development, preexisting PAPs undergo regulated phosphorylation and dephosphorylation events. Using the cloned PAP cDNA, we demonstrate that the complex changes in PAP forms seen during oocyte maturation may be due to modifications of a single polypeptide. These results demonstrate that the oocyte contains a cytoplasmic polymerase closely related to the nuclear enzyme and suggest models for how its activity may be regulated during early development.  相似文献   

6.
Symplekin is multifunctional protein localized to both the tight junction and the nucleus with known roles in mRNA polyadenylation, proliferation, differentiation and tumorigenesis. Functions of symplekin at tight junctions have not been systematically investigated. In this study, increased expression of symplekin was observed during the formation of tight junctions in cultured HT-29 and HepG2 epithelial cells. Repression of symplekin by RNAi increased the permeability of epithelial monolayers, disrupted cellular polarity, and decreased the expression of the tight junction protein ZO-1. Moreover, symplekin was co-localized with ZO-1 at tight junctions and co-immunoprecipitated with ZO-1, indicating that ZO-1 and symplekin form complexes. In conclusion, symplekin expression regulates the assembly of tight junctions, thus helps to maintain the integrity of the epithelial monolayer and cellular polarity.  相似文献   

7.
Kim JH  Richter JD 《Molecular cell》2006,24(2):173-183
Cytoplasmic polyadenylation is one mechanism that regulates translation in early animal development. In Xenopus oocytes, polyadenylation of dormant mRNAs, including cyclin B1, is controlled by the cis-acting cytoplasmic polyadenylation element (CPE) and hexanucleotide AAUAAA through associations with CPEB and CPSF, respectively. Previously, we demonstrated that the scaffold protein symplekin contacts CPEB and CPSF and helps them interact with Gld2, a poly(A) polymerase. Here, we report the mechanism by which poly(A) tail length is regulated. Cyclin B1 pre-mRNA acquires a long poly(A) tail in the nucleus that is subsequently shortened in the cytoplasm. The shortening is controlled by CPEB and PARN, a poly(A)-specific ribonuclease. Gld2 and PARN both reside in the CPEB-containing complex. However, because PARN is more active than Gld2, the poly(A) tail is short. When oocytes mature, CPEB phosphorylation causes PARN to be expelled from the ribonucleoprotein complex, which allows Gld2 to elongate poly(A) by default.  相似文献   

8.
Formation of the mature 3' ends of the vast majority of cellular mRNAs occurs through cleavage and polyadenylation and requires a cleavage and polyadenylation specificity factor (CPSF) containing, among other proteins, CPSF-73 and CPSF-100. These two proteins belong to a superfamily of zinc-dependent beta-lactamase fold proteins with catalytic specificity for a wide range of substrates including nucleic acids. CPSF-73 contains a zinc-binding histidine motif involved in catalysis in other members of the beta-lactamase superfamily, whereas CPSF-100 has substitutions within the histidine motif and thus is unlikely to be catalytically active. Here we describe two previously unknown human proteins, designated RC-68 and RC-74, which are related to CPSF-73 and CPSF-100 and which form a complex in HeLa and mouse cells. RC-68 contains the intact histidine motif, and hence it might be a functional counterpart of CPSF-73, whereas RC-74 lacks this motif, thus resembling CPSF-100. In HeLa cells RC-68 is present in both the cytoplasm and the nucleus whereas RC-74 is exclusively nuclear. RC-74 does not interact with CPSF-73, and neither RC-68 nor RC-74 is found in a complex with CPSF-160, indicating that these two proteins form a separate entity independent of the CPSF complex and are likely involved in a pre-mRNA processing event other than cleavage and polyadenylation of the vast majority of cellular pre-mRNAs. RNA interference-mediated depletion of RC-68 arrests HeLa cells early in G(1) phase, but surprisingly the arrested cells continue growing and reach the size typical of G(2) cells. RC-68 is highly conserved from plants to humans and may function in conjunction with RC-74 in the 3' end processing of a distinct subset of cellular pre-mRNAs encoding proteins required for G(1) progression and entry into S phase.  相似文献   

9.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

10.
The nuclear migration signal of Xenopus laevis nucleoplasmin.   总被引:46,自引:8,他引:38       下载免费PDF全文
Nucleoplasmin is the most abundant protein in the nucleus of Xenopus laevis oocytes. Its ability to target to the nucleus when microinjected into the cytoplasm has been the subject of many studies central to our understanding of how proteins segregate into nuclei. Using a cDNA clone we constructed beta-galactosidase-nucleoplasmin hybrids in modified bacterial expression vectors. The fusion proteins were expressed in Escherichia coli, purified and injected into the cytoplasm of X. laevis oocytes. The distribution of the fusion proteins between the cytoplasmic and nuclear compartments were analysed after incubation of various lengths of time. The results show that the signal sequence for nuclear transport is located close to the carboxy terminus of the protein. The signal sequence has been mapped to a small stretch of amino acids, containing a stretch of four lysines analogous to the SV40 large-T antigen signal.  相似文献   

11.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

12.
The location of hepatitis B virus (HBV) nucleocapsid (core particle) assembly in infected cells remains controversial. Some lines of evidence implicate the nucleus; others favor the cytoplasm. Via injection of a synthetic mRNA encoding the HBV nucleocapsid protein (p21.5), we have expressed both unassembled p21.5 and nucleocapsidlike core particles in Xenopus oocytes. Subcellular fractionation reveals that approximately 91% of the unassembled p21.5 and 95% of the core particles are cytoplasmic, with only 9 and 5%, respectively, in the nucleus. We present evidence showing that unassembled p21.5 equilibrates between nucleus and cytoplasm by passive diffusion and that intact core particles do not enter the nucleus. To examine the role of the nucleus in core particle formation, we expressed p21.5 in surgically anucleate oocytes. We show that anucleate oocytes support efficient core particle formation, indicating that (i) the nucleus is not essential for assembly and (ii) the cytoplasm can assemble most core particles found in oocytes. On the basis of our data, we propose that in oocytes, most core particle assembly (up to 95%) occurs in the cytoplasm, but that at least approximately 5% of the cellular core particles are assembled in the nucleus and remain there. We discuss the implications of these findings for the formation of replication-competent core particles in infected cells.  相似文献   

13.
Symplekin, a novel type of tight junction plaque protein   总被引:18,自引:11,他引:7       下载免费PDF全文
《The Journal of cell biology》1996,134(4):1003-1018
Using a monoclonal antibody we have identified and cDNA-cloned a novel type of protein localized, by light and electron microscopy, to the plaque associated with the cytoplasmic face of the tight junction- containing zone (zonula occludens) of polar epithelial cells and of Sertoli cells of testis, but absent from the junctions of vascular endothelia. The approximately 3.7-kb mRNA encodes a polypeptide of 1142 amino acids (calculated molecular weight 126.5 kD, pI 6.25), for which the name "symplekin" (from Greek sigma upsilon mu pi lambda epsilon kappa epsilon iota, nu, to tie together, to weave, to be intertwined) is proposed. However, both the mRNA and the protein can also be detected in a wide range of cell types that do not form tight junctions or are even completely devoid of any stable cell contacts. Careful analyses have revealed that the protein occurs in all these diverse cells in the nucleoplasm, and only in those cells forming tight junctions is it recruited, partly but specifically, to the plaque structure of the zonula occludens. We discuss symplekin as a representative of a group of dual residence proteins which occur and probably function in the nucleus as well as in the plaques exclusive for either tight junctions, adherens junctions, or desmosomes.  相似文献   

14.
Xenopus laevis histone H4 and H1 genes were transcribed in vitro to generate artificial precursor mRNAs (pre-mRNAs). These pre-mRNAs were microinjected into oocytes, matured oocytes, and unfertilized eggs of Xenopus laevis and their 3' cleavage and polyadenylation were investigated. In the oocyte nucleus both H4 and H1 pre-mRNAs were 3' cleaved but were not detectably polyadenylated. In the oocyte cytoplasm there was neither 3' cleavage nor polyadenylation of these histone pre-mRNAs. When injected into either matured oocytes or unfertilized eggs, the pre-mRNAs underwent 3' cleavage but this was inefficient when compared to the oocyte nucleus. In addition approximately 50% of the remaining uncleaved pre-mRNA was subject to a polyadenylation activity which added A tails of approximately 70 A residues. In contrast, artificial mouse beta-globin pre-mRNAs were not detectably 3' cleaved or polyadenylated in either microinjected oocytes or unfertilized eggs.  相似文献   

15.
16.
When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were 3H-labeled in vitro and injected back into X. laevis oocytes, most 3H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, 3H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of 3H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide, a cysteine protease inhibitor, resulting in the accumulation of 3H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus.  相似文献   

17.
In both vertebrates and invertebrates, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. In Xenopus oocytes, where most of the biochemical details of this process have been examined, polyadenylation is controlled by CPEB, a sequence-specific RNA binding protein. The activity of CPEB, which is to recruit cleavage and polyadenylation specificity factor (CPSF) and poly(A) polymerase (PAP) into an active cytoplasmic polyadenylation complex, is controlled by Eg2-catalyzed phosphorylation. Soon after CPEB phosphorylation and resulting polyadenylation take place, the interaction between maskin, a CPEB-associated factor, and eIF4E, the cap-binding protein, is destroyed, which results in the recruitment of mRNA into polysomes. Polyadenylation also occurs in maturing mouse oocytes, although the biochemical events that govern the reaction in these cells are not known. In this study, we have examined the phosphorylation of CPEB and have assessed the necessity of this protein for polyadenylation in maturing mouse oocytes. Immunohistochemistry has revealed that all the factors that control polyadenylation and translation in Xenopus oocytes (CPEB, CPSF, PAP, maskin, and IAK1, the murine homologue of Eg2) are also present in the cytoplasm of mouse oocytes. After the induction of maturation, a kinase is activated that phosphorylates CPEB on a critical regulatory residue, an event that is essential for CPEB activity. A peptide that competitively inhibits the activity of IAK1/Eg2 blocks the progression of meiosis in injected oocytes. Finally, a CPEB protein that acts as a dominant negative mutation because it cannot be phosphorylated by IAK1/Eg2, prevents cytoplasmic polyadenylation. These data indicate that cytoplasmic polyadenylation in mouse oocytes is mediated by IAK1/Eg2-catalyzed phosphorylation of CPEB.  相似文献   

18.
L A Nikitina  T A Detlaf 《Ontogenez》1986,17(3):243-247
The karyoplasm (the contents of germinal vesicle) of the Bufo viridis, Xenopus laevis, and Acipenser stellatus oocytes maturing under the influence of progesterone acquires the ability to induce the maturation (germinal vesicle breakdown) of the full grown oocytes, when injected into them. This ability arises in the karyoplasm earlier than in the cytoplasm and is preserved until the germinal vesicle breakdown.  相似文献   

19.
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.  相似文献   

20.
During early development, control of the poly(A) tail length by cytoplasmic polyadenylation is critical for the regulation of specific mRNA expression. Gld2, an atypical poly(A) polymerase, is involved in cytoplasmic polyadenylation in Xenopus oocytes. In this study, a new XGld2-interacting protein was identified: Xenopus RNA-binding motif protein 9 (XRbm9). This RNA-binding protein is exclusively expressed in the cytoplasm of Xenopus oocytes and interacts directly with XGld2. It is shown that XRbm9 belongs to the cytoplasmic polyadenylation complex, together with cytoplasmic polyadenylation element-binding protein (CPEB), cleavage and polyadenylation specificity factor (CPSF) and XGld2. In addition, tethered XRbm9 stimulates the translation of a reporter mRNA. The function of XGld2 in stage VI oocytes was also analysed. The injection of XGld2 antibody into oocytes inhibited polyadenylation, showing that endogenous XGld2 is required for cytoplasmic polyadenylation. Unexpectedly, XGld2 and CPEB antibody injections also led to an acceleration of meiotic maturation, suggesting that XGld2 is part of a masking complex with CPEB and is associated with repressed mRNAs in oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号