首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The role of mitochondrial swelling in the unmasking of GDP-binding sites on brown adipose tissue mitochondria has been examined in mice. Acute cold exposure (6 degrees C for 1 h) led to increases in GDP binding without changes in the concentration of uncoupling protein, indicating that an unmasking of binding sites had occurred. Measurements of mitochondrial matrix volume suggested that an acute unmasking of GDP-binding sites took place without swelling of the mitochondria. In addition, the induction of a rapid preswelling of the mitochondria by incubation in KCl in the presence of valinomycin did not affect the cold-induced unmasking of GDP-binding sites. It is concluded that the acute unmasking of GDP-binding sites on uncoupling protein in brown adipose tissue is not due simply to mitochondrial swelling.  相似文献   

2.
Rats, previously acclimated to 29 degrees C, were moved into the cold (4 degrees C) for 2 h. Scatchard analysis of GDP binding to the brown-adipose-tissue mitochondria of these animals showed a 2.3-fold increase in the number of high-affinity sites and a 1.5-fold increase in the number of low-affinity sites compared with binding in animals maintained at 29 degrees C. Immunochemical determination showed no increase in the amount of mitochondrial uncoupling protein during this period. This strongly suggests an unmasking of existing GDP-binding sites before a detectable increase in synthesis of uncoupling protein can occur. Washing with albumin increased the number of GDP-binding sites of brown-adipose-tissue mitochondria from both warm-housed and cold-exposed animals to the same extent. This indicates that the effects of washing with albumin and cold exposure are independent and additive.  相似文献   

3.
In this article we comment on the various in vitro biochemical measurements employed to assess the thermogenic activity and capacity of brown adipose tissue. The meaning and significance of changes in tissue weight, protein content, cell number, and mitochondrial mass are each summarized. In addition, various indices of the proton conductance pathway-mitochondrial swelling, proton conductance, uncoupling protein concentration, and GDP binding studies--are discussed. The issue of unmasking and masking of GDP binding sites is reviewed; recent reports have clearly demonstrated unmasking and masking, and it is concluded that GDP binding studies are an index of the activity of uncoupling protein, rather than a measure of its concentration. It is suggested that tissue mass, mitochondrial content, mitochondrial GDP binding, and uncoupling protein concentration represent core measurements for the biochemical assessment of the thermogenic activity and capacity of brown adipose tissue. Auxiliary measurements include Scatchard analysis of GDP binding data to distinguish changes in the number of binding sites from potential changes in Kd, and mitochondrial swelling studies, as an additional index of proton permeability. The distinction between thermogenic activity (GDP binding, proton permeability) and capacity (uncoupling protein content), both on a per unit of mitochondrial protein and per tissue basis, is emphasized.  相似文献   

4.
5.
Rats were housed at 4 degrees C for periods of up to 26 days. As little as 2 h of cold exposure caused an increase in the binding of [3H]GDP to mitochondria from brown adipose tissue. Incubation of mitochondria in vitro with 10 mM Mg2+ caused a marked increase in the subsequent binding of GDP to mitochondria from rats housed at 28 degrees C and a smaller increase in that from rats exposed to 4 degrees C for 2 h. Chronic exposure to cold led to an even greater increase in the amount of GDP bound to mitochondria incubated with Mg2+. The time course for the increase in the concentration of uncoupling protein was compared with that for GDP binding to mitochondria with and without Mg2+ treatment. The concentration of uncoupling protein appears to be correlated with the GDP-binding values for mitochondria treated with Mg2+ (r = 0.70) but not with the GDP binding to untreated mitochondria (r = 0.36). Therefore, the binding of GDP to untreated mitochondria may represent thermogenic activity at the time of death, whereas that after treatment with Mg2+ may more closely reflect total thermogenic capacity of the mitochondrion.  相似文献   

6.
The time-course for the induction of the uncoupling pathway in the inner membrane of brown-fat mitochondria from cold-adapting guinea pigs was studied. The amount of the protein was quantified from the capacity for high-affinity binding of GDP to the intact mitochondria, and was compared with the functional parameters diagnostic of the protein, namely the nucleotide-sensitive proton conductance and the sensitivity to uncoupling by low concentrations of fatty acids. A monophasic increase in nucleotide titre was observed, with no evidence of an early 'unmasking' of preexisting nucleotide-binding sites. The nucleotide-sensitive conductance increased in precise synchrony with the nucleotide-binding capacity. Mitochondria from newborn animals, and those from acutely cold-adapted animals, showed anomalously low sensitivities to uncoupling by fatty acids.  相似文献   

7.
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.  相似文献   

8.
1. Time-course variations of the thermogenic pathway in rat brown adipose tissue (BAT) mitochondria were examined. 2. Several parameters of mitochondrial energization, protonmotive force and its components pH gradient and membrane potential were investigated. The specific binding of GDP was compared with the effective proton conductance (CmH+) of the membrane. 3. Ten-days cold exposure led to maximal GDP binding and GDP-dependent CmH+. 4. The subsequent relative decrease in GDP binding observed during prolonged cold exposure (40 days) was functional and led to a lower GDP-dependent CmH+. CmH+ showed greater variation than GDP binding. 5. The CmH+ decrease was not due to a masking of active sites of the uncoupling protein. 6. Basal GDP-independent CmH+ was not modified. 7. Results are discussed with reference to the significance of biochemical measures and to the physiological regulation of BAT thermogenesis.  相似文献   

9.
The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was approximately 3 microg/mg protein, approximately 20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and approximately 4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.  相似文献   

10.
The effect of fatty acids, palmitoyl-CoA, and N',N-dicyclohexylcarbodiimide on the ion conductance of the reconstituted brown adipose tissue mitochondria uncoupling protein was investigated. 1, 5, and 10 microM palmitic acid induced a specific, GDP inhibited, increase in proton conductance in proteoliposomes containing the uncoupling protein but not in proteoliposomes prepared with purified protein extracts of liver mitochondria. 10 microM oleic acid, like palmitic acid, increased proton conductance in proteoliposomes prepared with the uncoupling protein. Palmitoyl-CoA and caprylic acid had no effect on increasing proton conductance. Similar to the observation in mitochondria, there was no effect of palmitic acid on Cl-conductance, but unlike mitochondria its activation by palmitoyl-CoA or inhibition by N',N-dicyclohexylcarbodiimide was lost. The results, obtained in an isolated system, provide support for the contention that long chain fatty acids act as an acute physiological activator of the uncoupling protein.  相似文献   

11.
Proteoliposomes containing highly purified uncoupling protein generated by a modified purification/reconstitution procedure carried out active GDP dependent proton conductance. It was further established that long chain acyl CoA esters as well as fatty acids stimulated proton influx by the uncoupling protein, and, moreover, that the acyl CoA esters were partially effective in overcoming the inhibition by GDP. GDP binding to the purified uncoupling protein was inhibited by acyl CoA esters but not fatty acids. Phenylglyoxal which prevents GDP binding to the uncoupling protein eliminated the acyl CoA but not the fatty acid effect on proton conductance. These results substantiate the fact that nucleotides and acyl CoA esters act at the same regulatory site on the uncoupling protein, whereas, fatty acids act at a separate site. The properties of the purified/reconstituted uncoupling protein confirm they are identical to those inherent in brown adipose tissue mitochondria.  相似文献   

12.
The effects of fasting and refeeding on the concentration of uncoupling protein in brown adipose tissue mitochondria have been investigated in mice. Fasting mice for 48 h led to a large decrease in the total cytochrome oxidase activity of the interscapular brown fat pad. Mitochondrial GDP binding and the specific mitochondrial concentration of uncoupling protein also fell on fasting. After 24 h refeeding both GDP binding and the mitochondrial concentration of uncoupling protein were normalized, but there was no alteration in the total tissue cytochrome oxidase activity. Fasting appears to induce a selective loss of uncoupling protein from brown adipose tissue mitochondria, which is rapidly reversible on refeeding.  相似文献   

13.
Scatchard analysis of3H-guanosine diphosphate (GDP) binding to rat brown-adipose-tissue mitochondria demonstrated that binding to the high- and low-affinity sites (Kd=0.05 and 2.0 M) was abolished by denaturation at 100°C but non-specific binding remained constant (0.2% of free-GDP). Prior incubation of mitochondria at 37°C reduced binding to the high-affinity site, but this could be reversed by incubating samples at 0°C. Addition of palmitic acid (5–40 nmole/mg of mitochondrial protein) did not affect GDP-binding, but similar concentrations of palmitoyl CoA caused a slight reduction in the number of high-affinity sites and a significant decrease in the number of lower-affinity sites. Acute treatments known to stimulate thermogenesis in vivo (a single meal, cold exposure, or noradrenaline injection 40–80 min before sacrifice) all increased binding to both binding sites, and tended to raise the dissociation constants, whereas injection of 2-deoxy-D-glucose, which depresses metabolic rate in the rat, decreased dissociation constants of both sites and the maximum number of high-affinity sites. These data indicate that both GDP-binding sites respond rapidly to acute thermogenic stimuli, possibly due to conformational changes in the mitochondrial inner membrane, and that palmitoyl CoA may influence mitochondrial proton conductance via an association with purine nucleotide binding sites.  相似文献   

14.
Chronic dietary administration of the oral hypoglycaemic ciglitazone (3 g/day for 14–28 days) to lean, non-diabetic CD1 mice resulted in increased brown adipose tissue mitochondrial GDP binding and a marked increase in the thermic effect of the beta-adrenoceptor agonist BRL 26830A. However, ciglitazone was not itself thermogenic after an acute dose, nor did it raise resting metabolic rate during chronic dietary dosing.  相似文献   

15.
The thermogenic activity and capacity of brown adipose tissue were determined in mice during lactation and after weaning. There was a marked fall during lactation in the mitochondrial content of the tissue, and in GDP binding and the specific mitochondrial concentration of uncoupling protein. The lactation-induced functional atrophy of brown adipose tissue was fully reversible after weaning; mitochondrial content and the mitochondrial concentration of uncoupling protein were both restored, although GDP binding was not normalized.  相似文献   

16.
Talbot DA  Lambert AJ  Brand MD 《FEBS letters》2004,556(1-3):111-115
Superoxide generated using exogenous xanthine oxidase indirectly activates an uncoupling protein (UCP)-mediated proton conductance of the mitochondrial inner membrane. We investigated whether endogenous mitochondrial superoxide production could also activate proton conductance. When respiring on succinate, rat skeletal muscle mitochondria produced large amounts of matrix superoxide. Addition of GDP to inhibit UCP3 markedly inhibited proton conductance and increased superoxide production. Both superoxide production and the GDP-sensitive proton conductance were suppressed by rotenone plus an antioxidant. Thus, endogenous superoxide can activate the proton conductance of UCP3, which in turn limits mitochondrial superoxide production. These observations provide a departure point for studies under more physiological conditions.  相似文献   

17.
1. The thermogenic activity of brown adipose tissue in hibernating garden dormice during hypothermic torpor and at different states of arousal were studied. High levels of GDP binding were observed on isolated brown fat mitochondria, indicating that the thermogenic proton conductance pathway is very active in brown fat during arousal. 2. In order to investigate this phenomenon, the uncoupling protein was assessed by immunological assay and the mRNA for UCP was analysed. 3. Animals during arousal exhibited neither increase in UCPmRNA nor an increase in UCP. 4. Our results suggest that during the rewarming of garden dormice there is an acute unmasking of GDP binding sites on the protein.  相似文献   

18.
The sequential appearance of changes in interscapular brown adipose tissue composition, cytochrome oxidase activity and GDP binding was studied throughout pregnancy and lactation in the rat. Brown adipose tissue was hypertrophied during pregnancy because of progressive lipid accumulation, whereas its mitochondrial component and GDP binding to brown fat mitochondria were unchanged. In early lactation (day 5) there was a decrease in the overall GDP binding to brown fat only because of the lower mitochondrial protein content. In late stages of lactation (days 10 and 15), the amount of tissue and its mitochondrial protein content were minimal and the GDP binding per mitochondrial protein decreased substantially. Scatchard analysis in day-15-lactating rats indicated a large decrease in GDP binding sites without any changes in affinity. It is concluded that the diminished thermogenic activity of brown fat in lactation is attained through changes at different structural levels of the tissue occurring in a characteristic sequential trend; first a reduction in its mitochondrial component, and only later, at mid-lactation, a decrease in the specific mitochondrial proton conductance pathway activity.  相似文献   

19.
1. A rapid unmasking of GDP binding sites on brown adipose tissue (BAT) mitochondria was observed when hamsters acclimatized to 28 degrees C were exposed to a temperature of 4 degrees C for 2 hr. 2. No rapid unmasking of GDP binding sites was observed when hamsters housed at 22 degrees C were briefly exposed to 4 degrees C. 3. The amount of GDP bound to BAT mitochondria from hamsters increased during 2 weeks of exposure to 4 degrees C, but did not change between 2 weeks and 30 days of cold exposure. 4. Incubation of mitochondria with 10 mM Mg2+ prior to the GDP binding assay increased the subsequent GDP binding to BAT mitochondria from hamsters housed at 28, 22 or 4 degrees C, albeit to different degrees. 5. The amount of GDP bound to uncoupling proteins isolated from untreated and Mg(2+)-treated mitochondria of hamsters and rats was measured. Scatchard analyses of the binding of GDP to purified uncoupling protein indicate that increases in the number of binding sites due to Mg2+ treatment of mitochondria do not change the affinity of the protein for GDP.  相似文献   

20.
A polyclonal antisera against rat brown adipose tissue mitochondrial uncoupling protein was used to examine mitochondrial samples from liver and white and brown adipose tissue from several mammalian species. A sodium dodecyl sulfate--polyacrylamide gel electrophoretic separation of proteins combined with an immunochemical method allowed for visualization of antigen--antibody complexes on nitrocellulose blots. Hamster, cavy, monkey, and mouse brown adipose tissue mitochondrial samples cross-reacted with the antisera. Mitochondria prepared from white fat obtained from young swine and sheep contained two closely migrating, antigenically active proteins. Hepatic mitochondria samples did not contain antigenically active protein. Reflectance densitometry was used for quantitation of the uncoupling protein in various mitochondrial samples. In rats fed diets low in protein, there appears to be a dissociation between the concentration of uncoupling protein and the number of nucleotide binding sites as given by the [3H]GDP binding assay. These results are indicative of a physiological activation of the uncoupling protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号