首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ning J  Kong F 《Carbohydrate research》2001,330(2):165-175
The title compounds 5-O-acetyl-1,2-anhydro-3-O-benzyl-alpha-D-ribofuranose and 5-O-acetyl-1,2-anhydro-3-O-benzyl-beta-D-lyxofuranose, and 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose and 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-beta-D-talopyranose, and 5-O-acetyl-1,2-anhydro-3,6-di-O-benzyl-beta-D-mannofuranose and 1,2-anhydro-5,6-di-O-benzoyl-3-O-benzyl-beta-D-mannofuranose have each been synthesized from the corresponding 2-O-tosylate and 1-free hydroxyl intermediates by base-initiated intramolecular S(N)2 ring closure in almost quantitative yields. Acetyl and benzoyl groups were not affected in the ring closure reactions. Condensation of 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose and 5-O-acetyl-1,2-anhydro-3,6-di-O-benzyl-beta-D-mannofuranose with 1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose in the presence of ZnCl2 as the catalyst afforded the 1,2-trans-linked 6-O-acetyl-3,4-di-O-benzyl-beta-D-glucopyranosyl-(1-->6)-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose and 5-O-acetyl-3,6-di-O-benzyl-alpha-D-mannofuranosyl-(1-->6)-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose as the sole products in satisfactory yields, while condensation of 5-O-acetyl-1,2-anhydro-3-O-benzyl-beta-D-lyxofuranose with 3-O-benzyl-1,2-O-isopropylidene-alpha-D-xylofuranose yielded the 1,2-trans-linked 5-O-acetyl-3-O-benzyl-alpha-D-lyxofuranosyl-(1-->5)-3-O-benzyl-1,2-O-isopropylidene-alpha-D-xylofuranose as the sole product in a good yield. The 6-O-acetyl group in the glycosyl donor, 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose, did not influence the stereoselectivity of the ring-opening-coupling reaction.  相似文献   

2.
The synthesis and conformational studies of (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-allo-inositol and (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-6-O-methyl-allo-inositol are described. Solid state conformations of the title compounds have been studied by solving their X-ray crystal structures. The inositol ring in both the compounds deviate considerably from the ideal chair conformation to flattened chair conformation in the solid state. Their conformations in solution were studied by the use of 1H NMR spectroscopy. These conformational analyses revealed that the title compounds adopt similar conformations in solid and solution states irrespective of the solvent polarity.  相似文献   

3.
The X-ray crystal structure of 1L-1-O-acetyl-2,3:5,6-di-O-isopropylidene-chiro-inositol is described. The inositol ring deviates considerably from the ideal chair conformation to a flattened chair. A comparison of its conformation in solution with that in solid was made by the use of 1H NMR. This conformational analysis revealed that the title compound adopts similar conformations in solid state and in solution states irrespective of solvent polarity.  相似文献   

4.
The crystal structure of 3-O-(6-O-acetyl-2,4-diazido-3-O-benzyl-2,4-dideoxy-alpha-D- glucopyranosyl)-1,6-anhydro- 2,4-diazido-2,4-dideoxy-beta-D-glucopyranose, C21H24N12O7, mol. wt. 556.5, was investigated by X-ray analysis. The disaccharide crystallizes in the triclinic space group P1, with a = 889.3(5), b = 869.6(5), and c = 999.5(6) pm, and alpha = 105.83(4) degrees, beta = 116.22(4) degrees, gamma = 88.42(4) degrees, Z = 1, and rho = 1.394 g.cm-3. Phase determination failed with direct methods, but, as the 1,6-anhydride component of the molecule was already known from a previous structure analysis, the vector-search method could be applied in solving the structure. Diffractometer data were refined to an R value of 0.063 (Rw = 0.080) for 2102 observed reflections. The anhydro-bridged system has a distorted 1C4(D) conformation, in agreement with that of other anhydropyranoses so far investigated. A comparison shows that, for the specific kind of distortion, mainly the anti-reflex effect is responsible, whereas 1,3-diaxial interactions have a minor influence. The nonbridged ring adopts an almost perfect 4C1(D) conformation. The anomeric effect is observed in both of the sugar-ring systems in terms of bond-length shortening. The disaccharide has an alpha-D-Glc-4C1-(1a----3e)-D-Glc-1C4 glycosidic linkage. No previous X-ray investigation of a compound of this type is known. The pyranoid rings are almost perpendicular to each other. The phi, psi angles of the glycosidic linkage are +78.1(5) and -86.0(4) degrees.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
During the preparation of 3-C-(6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-mannopyranosyl)-1-propene, using a published Sakurai-type reaction on the parent methyl glycoside, some observations were made on the sensitivity to reaction conditions that were not previously reported. This Note presents the study of this allylation reaction followed by acetolysis, which ultimately led to the best conditions to obtain the C-glycoside, and on further transformations to yield the corresponding aldehydic and acidic derivatives.  相似文献   

6.
Isobutyl 2,3,4-tri-O-acetyl-1-thio-beta-D-xylopyranoside is monoclinic, P21, with a = 10.134(4), b = 7.748(3), c = 11.726(4) A, beta = 96.63(3) degrees, V = 914.55 A3, Z = 2, Dm = 1.262, Dx = 1.264 g . cm-3, mu(MoK alpha) = 226 M-1. The X-ray intensities of 1724 reflections were measured with Nb-filtered MoK alpha radiation (lambda = 0.7107 A) at room temperature. The structure was solved by direct methods, and refined by full-matrix least squares, with anisotropic thermal parameters for the carbon and oxygen atoms and isotropic thermal parameters for the hydrogen atoms, to a final agreement factor of R = 0.08. The molecule has the 4C1(D) conformation, with puckering parameters Q = 0.582 A, theta = 5.6 degrees, phi = 334.7 degrees. The acetyl groups have the planar, (S)-cis configuration most commonly observed. They are oriented, as in many other per-O-acetylated aldopyranosides, with the acetyl planes within +/- 30 degrees of the C-H bond at the ring-carbon atom to which they are attached. Although this is primarily a van der Waals structure, there is some evidence for CH---O hydrogen-bonding.  相似文献   

7.
3-O-(6-O-Acetyl-2,3-anhydro-4-deoxy-α-l-ribo-hexopyranosyl)-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose has been synthesised and its monocrystal investigated by X-ray diffraction methods. The compound crystallises in the orthorhombic system, space group P212121, with cell constants a = 8.790(7), b = 11.678(4), and c = 21.457(10) Å. The intensity data were collected with a four-circle CAD-4 diffractometer. From a total of 1684 intensities, 1275 were of I > 2σI. The structure was solved by direct methods and refined by the full-matrix, least-squares procedure, resulting in R 0.057. The 4-deoxy-2,3-anhydropyranose ring is characterised by a sofa conformation (5E), the 1,2-O-isopropylidene ring has a hybrid conformation (E + T), and the 5,6-O-isopropylidene and the α-d-glucofuranose rings have twist (T) conformations. The φ and ψ torsion angles for the glycosidic linkage are 54(4)° and 29(4)°, respectively.  相似文献   

8.
Selective tosylation followed by acetylation of methyl 3-azido-2,3-dideoxy-alpha-D-arabino-hexopyranoside (1) in pyridine at room temperature affords a mixture of methyl 4-O-acetyl-3-azido-2,3-dideoxy-6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (4) and methyl 3-azido-2,3-dideoxy-4,6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (3). Compound 4 undergoes nucleophilic displacement with sodium iodide in acetic anhydride to give methyl 4-O-acetyl-3-azido-2,3,6-trideoxy-6-iodo-alpha-D-arabino-hexopyranoside (7), whose crystal structure and (1H) and (13)C NMR data are reported. This compound adopts the 4C(1) conformation.  相似文献   

9.
X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.  相似文献   

10.
Condensation of 6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose with methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galacto-heptodialdo-1,5-pyranoside afforded a 2:1 mixture of the 1S and 1R isomers (1a and 1b) of 3-[6(R)-O-benzyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranos-6-yl]-1-hydroxy-1-(methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galactopyranosid-6-yl)propyne. A single crystal of the 1-O-acetyl derivative (1c) of 1a was investigated by X-ray diffraction methods in a four-circle diffractometer. Compound 1c crystallises in the monoclinic system, space group P21 (Z = 2) with cell dimensions a = 14.896(2), b = 8.295(1), c = 20.547(3) Å, and β = 102.66(1)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure against 3839 unique reflections (F > 2σF), resulting in a final R = 0.045 (unit weights). The configuration at the new chiral center (C-1) was established as S(d). The galactopyranose rings have conformations 4C1 (tri-O-benzylated moiety) and °S5 + °T2 (di-O-isopropylidenated moiety). The 1,2- and 3,4-O-isopropylidene rings have 3T2 and 2E conformations, respectively.  相似文献   

11.
Methyl 6-O-(6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl)-2,3,4-tri- O-benzyl-alpha-D-glucopyranoside (5) was formed with high stereoselectivity when the condensation of methyl 2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl (1) with 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl chloride in ether was promoted with silver perchlorate in the presence of 2,4,6-trimethylpyridine. O-Deacetylation of 5, followed by treatment of the formed 6, containing only HO-6' unsubstituted, with diethylaminosulfur trifluoride (DAST) or dimethylaminosulfur trifluoride (methyl DAST) gave the per-O-benzyl derivative (9) of methyl 6'-deoxy-6'-fluoro-alpha-isomaltoside. Compound 9 was also obtained by condensation of 1 with 2,3,4-tri-O-benzyl-6-deoxy-6-fluoro-beta-D-glucopyranosyl fluoride (4) in the presence of silver perchlorate and anhydrous stannous chloride. The fully benzylated methyl alpha-glycoside (15) of 6-deoxy-6-fluoro-isomaltotriose, was obtained by condensation of 6 with 4. Hydrogenolysis of 9 and 15 gave the methyl alpha-glycosides of isomaltose and isomaltotriose fluorinated at C-6 of their (nonreducing) D-glucosyl group. Fluoride-ion displacements involving DAST and methyl DAST gave practically identical results, but mixtures arising from reactions involving the latter reagent were lighter-colored and easier to resolve by chromatography. The isolation of methyl alpha-glycosides of 6'-deoxy-6'-fluorogentiobiose and of 6'-O-(6-deoxy-6-fluoro-beta-D-glucopyranosyl) isomaltose is also described.  相似文献   

12.
Lactitol trihydrate, C12H24O11.3H2O, crystallises in the orthorhombic space group, P2(1)2(1)2(1) with cell dimensions a = 8.306(2), b = 10.163(1), c = 21.321(1) A, and V = 1799.8(5) A3; Z = 4, Dx = 1.47 Mg m-3, lambda(Cu-K alpha) = 1.54178 A, mu = 1.14 mm-1, F(000) = 856, and T = 23 degrees. There are one intra- and thirteen inter-molecular hydrogen bonds in the structure. The bond lengths and angles agree well with the mean values of related structures. The galactopyranosyl ring has a chair conformation.  相似文献   

13.
The dipeptide, L-prolyl-L-leucine monohydrate (C11H20N2O3.H2O, molecular weight, 246.3) crystallizes in the monoclinic space group P2(1), with cell constants: a = 6.492(2)A, b = 5.417(8)A, c = 20.491(5)A, beta = 96.59(2) degrees, Z = 2, Do = 1.15 g/cm3, and Dc = 1.142 g/cm3. The structure was solved by SHELX-86 and refined by full matrix least squares methods to a final R-factor of 0.081 for 660 unique reflections (I greater than 2 sigma (I)) measured on an Enraf Nonius CAD-4 diffractometer (CuK alpha, lambda = 1.5418 A, T = 293 K). The peptide linkage exists in the trans conformation. The pyrrolidine ring exists in the envelope conformation. The values of the sidechain torsion angles are: chi 1 = -59.3(13) degrees, chi 21 = -63.1(16) degrees and chi 22 = 174.8(15) degrees for leucine (C-terminal). The crystal structure is stabilised by a three-dimensional network of N-H ... O, O-H ... O, and C-H ... O hydrogen bonds.  相似文献   

14.
《Carbohydrate research》1987,166(1):19-25
A single crystal of 3-O-(2,3-anhydro-4-deoxy-α-l-lyxo-hexopyranosyl)-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (1), obtained from its 6-acetate, has been investigated by X-ray diffraction methods. Compound 1 crystallises in the orthorhombic system, space group P21212P1, with cell dimensions a = 8.556(1), b = 12.303(1), and c = 18.397(1) Å. An almost ideal half-chair conformation 5Ho was found for the 2,3-anhydropyranose moiety of 1.  相似文献   

15.
Glycosylation of methyl 6-O-acetyl-3-O-benzoyl-2-deoxy-phthalimido-beta-D-glucopyranoside and its 4-trityl ether by benzobromogalactose, 1-O-acetyl-2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranose, 1,2-[(alpha-p-tolylthio)benzylidene]- and 1,2-O-[(alpha-cyano)benzylidene]-3,4,6-tri-O-benzoyl-alpha-D- galactopyranoses proceeds non-stereospecifically. The best yield of beta-linked disaccharide was obtained upon glycosylation by benzobromogalactose in the presence of silver triflate and tetramethylurea in nitromethane.  相似文献   

16.
The diketopiperazines cyclo-(L-Thr)2 and cyclo-(L-allo Thr)2 in water and in dimethyl sulfoxide were studied by proton and carbon-13 nuclear magnetic resonance, and the dominant conformation were deduced from proton-proton and proton-carbon coupling constants. In cyclo-(L-Thr)2 the chi 1 = 60 degrees, hydroxyl over the ring, side chain conformation is favored; this conformation is also favored for cyclo-(L-Ser)2 and cyclo-(L-Ser-D-Ser). However, the important side chain conformation for cyclo-(L-allo Thr)2 is chi 1 = -60 degrees, methyl group over the diketopiperazine ring. The determining factors are apparently steric. The diketopiperazine ring of cyclo-(L-Thr)2 is puckered to hold the side chains more nearly axial than is that of cyclo-(L-allo Thr)2. although the degree of ring folding is probably not large.  相似文献   

17.
3-O-Mesyl-1,6-di-O-trityl-beta-D-fructofuranosyl-(2-->1)-6-O-trityl-alpha-D-glucopyranoside (3) was synthesized via stannylation of 6,1',6'-tri-O-tritylsucrose with dibutyltin oxide in benzene, followed by treatment of the crude product with methanesulfonyl chloride in the presence of triethylamine in dichloromethane at 0 degrees C. A similar treatment of the tri-tritylsucrose in toluene, instead of benzene, yielded 4-O-mesyl-1,6-di-O-trityl-beta-D-fructofuranosyl-(2-->1)-6-O-trityl-alpha-D-glucopyranoside (4) as the major product. The X-ray crystal structure of the corresponding acetyl derivative, 3-O-acetyl-4-O-mesyl-1,6-di-O-trityl-beta-D-fructofuranosyl-(2-->1)-2,3,4-tri-O-acetyl-6-O-trityl-alpha-D-glucopyranoside (5), confirms the position and stereochemistry of the methanesulfonyl group at C-4 of the fructofuranosyl ring.  相似文献   

18.
2,4-O-Benzylidene-L-xylose was converted via a Wittig reaction into Z-2,4-O-benzylidene-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-++ +enitol (17), which, on hydrogenation, gave 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo- hexitol (33). tert-Butyldimethylsililation of the primary hydroxyl group of 33, followed by 4-methoxybenzylation, and desilylation afforded 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-2,3,4-tri-O-(4-methoxybenzyl)-D-xyl o- hexitol (54). A Mitsunobu-type reaction of 54 replaced HO-1 by cyanide to give, after hydrolysis and hydrogenolysis, 2,6,7-trideoxy-7-C-(2,4- dichlorophenyl)-D-xylo-heptono-1,4-lactone (55). Mesylation of 33 and then acetylation gave 2,3,4-tri-O-acetyl-5,6-dideoxy- 6-C-(2,4-dichlorophenyl)-1-O-methanesulfonyl-D-xylo-hexitol (63), which was converted via its 1-thiobenzoate into bis[1,5,6-trideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hexitol] 1,1'-disulfide (65). Acetylation of 65, followed by permanganate oxidation and deacetylation, afforded sodium 6-(2,4-dichlorophenyl)-D-xylo- 2,3,4-trihydroxy-hexanesulfonate (67). Both 57 (obtained from 55 by hydrolysis with NaOH) and 67 are weak inhibitors of HMG-CoA reductase.  相似文献   

19.
2,5-Anhydro-3,4-O-(1,2-ethanediyl)-D-mannitol (1) was prepared from 2,5-anhydro-D-mannitol (2) in three steps. The fused ring system was introduced by a phase-transfer alkylation using 1,2-dibromoethane. Its conformation in solution was determined by NMR studies at 500 MHz. Variable-temperature studies showed no lineshape change from 25 to 80 degrees in D2O. The data indicate that the five-membered ring is locked by the trans-fused six-membered 1,4-dioxane ring into a twist 4T3 conformation. A single-crystal X-ray study was carried out. The crystals are orthorhombic, C222(1), a = 4.7252 (6), b = 14.0364 (12), c = 13.268 (2) A, Z = 4, with R = 0.032 for 894 observations. The molecule lies upon a crystallographic two-fold axis, and thus the five-membered ring exists in a perfect 4T3 conformation with a pseudorotation angle of 0 degree and amplitude of 47.2 degrees, in agreement with the NMR results. We have shown earlier that, among twenty possible conformers, phosphofructokinase acts specifically on the 4T3 conformer of the beta anomer of D-fructose 6-phosphate.  相似文献   

20.
-Methoxy-5-(2',3',4'-trimethoxyphenyl) tropone is an active analog of colchicine, a mitotic spindle inhibitor, which is missing the middle "B" ring. This compound crystallizes in the triclinic system, space group P1, with Z = 2; a = 10.135(2), b = 10.166 (4), and c = 7.863(2) A; alpha = 82.15(3), beta = 103.49(3), and gamma = 107.16(2); degrees and V = 750.7(4) A. The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.063, using 2503 observed reflections and 271 parameters. Despite the absence of the middle ring, the conformation of the molecule is similar to that of colchicine, isocolchicine , and their derivatives. The troponoid ring is dissimilar to the phenyl ring in that it is not aromatic and does have alternating short and long bond lengths. The dihedral angle between the least-squares planes of the two rings is -57.4 degrees. Van der Waals surface representations of the analog and colchicine are presented to demonstrate the similarity and differences of these two molecules . The structural information of the analog is consistent with the interpretation of thermodynamic parameters which govern the interactions between brain tubulin and the analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号