首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supplying nitrate to N-depleted wheat seedlings (Triticum vulgare cv. Knox) stimulated the uptake and translocation of both 83Sr and 45Ca. Since the increase in 45Ca accumulation was greater, the 85Sr/45Ca ratio in the plant tissue was decreased. Nitrate had relatively little influence on the amount of the divalent cations and 85Sr/45Ca ratio in the exchangeable fraction on the root surfaces, whereas it greatly increased the uptake into root tissue and translocation to shoots. The increase in percent transported to shoots occurred largely in the period of most rapid nitrate uptake. A split root study indicated that nitrate was ineffective when it was supplied to a different portion of the root system than that exposed to 85Sr and 45Ca. Nevertheless, ammonium and urea also increased the translocation of the two cations, indicating that the effects of nitrate could not entirely be ascribed to a direct effect of the nitrate anion.  相似文献   

2.
The Metabolism and Translocation of Zeatin in Intact Radish Seedlings   总被引:2,自引:0,他引:2  
After the roots of intact radish seedlings had taken up [3H]zeatinfor 1 h, the seedlings were transferred to nutrient lackingzeatin and extracted at intervals. After 23 h in the absenceof zeatin, 6 per cent of the radioactivity extracted per seedlingwas recovered from the de-ribbed cotyledon laminae, 4 per centfrom the hypocotyls, and 87 per cent from the roots. Per unitweight of tissue, the radioactivity extracted from the rootwas about 40 times that recovered from any other region. Zeatin was rapidly metabolized by the root tissue, and 4 to9 h after transfer of the seedlings to nutrient lacking zeatin,accounted for a negligible proportion of the radioactivity.Initially zeatin riboside 5'-monophosphate was the principalroot metabolite, but after 9 h, 7-glucosylzeatin (raphanatin)was the dominant metabolite. Conversion of zeatin to dihydrozeatinwas not detected. Raphanatin was also the major metabolite inthe cotyledon laminae where some free zeatin was detectable.The principal metabolites in hypocotyl extracts were AMP andzeatin riboside 5'-monophosphate but zeatin riboside was theonly significant source of radioactivity in the xylem sap. When [3H]zeatin was applied directly to cotyledon laminae, 99per cent of the radioactivity was localized in the treated laminae;however traces of zeatin were detected in the roots. In radish seedlings, zeatin riboside appears to be the translocationalform of zeatin, while raphanatin may be a storage form.  相似文献   

3.
Analysis of Respiratory Chain Regulation in Roots of Soybean Seedlings   总被引:10,自引:1,他引:10       下载免费PDF全文
Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state.  相似文献   

4.
The enzyme activities of isocitrate dehydrogenase (ICDH, NADP-specific), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), phosphoenolpyruvate carboxykinase (PEPCK), phosphofructokinase (PFK), pyruvate kinase (PK), and fructose-l,6-bisphosphatase (FBPase) were studied in the third-stage juveniles of Steinernema carpocapsae. Reaction requirements, pH optima, substrate and cofactor kinetic constants were similar to those reported previously from other parasitic helminths with the exception of LDH, which was unstable and could not be characterized for specific activity and kinetic constants. The respective pH optima were 7.5 for ICDH, 8.8 for MDH, 6.5 for PEPCK, 7.3 for PFK, 7.2 for PK, and 7.5 for FBPase. The specific activities for ICDH, MDH, PEPCK, PFK, PK, and FBPase at pH 7.5 were 4.8, 1,300, 22, 25, 35, and 6.8 (nmoles substrate ∙ min⁻¹ ∙ mg protein⁻¹), respectively. In summary, the infective juveniles of S. carpocapsae display the metabolism typical of a facultative aerobe.  相似文献   

5.
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.  相似文献   

6.
青海省小麦品种中Yr10和Yr15基因及其1BL/1RS易位的分子检测   总被引:2,自引:0,他引:2  
利用抗条锈病基因Yr10和Yr15的SCAR和Barc8标记以及1BL/1RS易位的复合标记,对青海省育成和引进的137份小麦品种进行检测,以明确Yr10和Yr15基因以及1BL/1RS易位在青海小麦品种资源中的分布.结果显示:在137份材料中,有4份检测到Yr10基因,19份检测到Yr15基因,分别占参试材料的2.9%和13.9%,没有检测到同时携带Yr10和Yr15基因的材料;有22份材料为1BL/1RS易位,占参试材料的16.1%.研究表明,青海省大部分小麦抗锈品种及1BL/1RS易位品种为外引种品种.  相似文献   

7.
Aphelenchoides besseyi, the nematode causal agent of white-tip disease of rice, was recovered from 5.5% of 474 seed samples obtained from rice seed warehouses in Louisiana. Laboratory tests in which A. besseyi-infested rice seed was treated with Phostoxin®, a compound used for control of insects in stored grain, indicate that it also has nematicidal properties. In 18-week-duration greenhouse tests, populations of A. besseyi increased 4-5-fold on the cultivars Saturn and Melrose and 3-fold on Nova ''76. Green weights of Nova ''76 plants inoculated with A. besseyi and Sclerotium oryzae, the causal agent of rice stem rot, were significantly reduced below those of plants inoculated with either organism alone or with distilled water. Weights of Melrose plants were reduced significantly by treatments with A. besseyi alone and A. besseyi plus S. oryzae, but not by S. oryzae alone. Saturn plant weights were not reduced significantly by either organism alone or by the two in combination.  相似文献   

8.
This study evaluated the effects of anoxia on K+ uptake andtranslocation in 3–4-d-old, intact, rice seedlings (Oryzasativa L. cv. Calrose). Rates of net K+ uptake from the mediumover 24 h by coleoptiles of anoxic seedlings were inhibitedby 83–91 %, when compared with rates in aerated seedlings.Similar uptake rates, and degree of inhibition due to anoxia,were found for Rb+ when supplied over 1·5–2 h,starting 22 h after imposing anoxia. The Rb+ uptake indicatedthat intact coleoptiles take up ions directly from the externalsolution. Monovalent cation (K+ and Rb+) net uptake from thesolution was inhibited by anoxia to the same degree for thecoleoptiles of intact seedlings and for coleoptiles excised,‘aged’, and supplied with exogenous glucose. Transportof endogenous K+ from caryopses to coleoptiles was inhibitedless by anoxia than net K+ uptake from the solution, the inhibitionbeing 55 % rather than 87 %. Despite these inhibitions,osmotic pressures of sap (sap) expressed from coleoptiles ofseedlings exposed to 48 h of anoxia, with or without exogenousK+, were 0·66 ± 0·03 MPa; however,the contributions of K+ to sap were 23 and 16 %, respectively.After 24 h of anoxia, the K+ concentrations in the basal10 mm of the coleoptiles of seedlings with or without exogenousK+, were similar to those in aerated seedlings with exogenousK+. In contrast, K+ concentrations had decreased in aeratedseedlings without exogenous K+, presumably due to ‘dilution’by growth; fresh weight gains of the coleoptile being 3·6-to 4·7-fold greater in aerated than in anoxic seedlings.Deposition rates of K+ along the axes of the coleoptiles werecalculated for the anoxic seedlings only, for which we assessedthe elongation zone to be only the basal 4 mm. K+ depositionin the basal 6 mm was similar for seedlings with or withoutexogenous K+, at 0·6–0·87 µmolg–1 f. wt h–1. Deposition rates in zones above6 mm from the base were greater for seedlings with, thanwithout, exogenous K+; the latter were sometimes negative. Weconclude that for the coleoptiles of rice seedlings, anoxiainhibits net K+ uptake from the external solution to a muchlarger extent than K+ translocation from the caryopses. Furthermore,K+ concentrations in the elongation zone of the coleoptilesof anoxic seedlings were maintained to a remarkable degree,contributing to maintenance of sap in cells of these elongatingtissues.  相似文献   

9.
Isoprene synthase is the enzyme responsible for the foliar emission of the hydrocarbon isoprene (2-methyl-1,3-butadiene) from many C3 plants. Previously, thylakoid-bound and soluble forms of isoprene synthase had been isolated separately, each from different plant species using different procedures. Here we describe the isolation of thylakoid-bound and soluble isoprene synthases from a single willow (Salix discolor L.) leaf-fractionation protocol. Willow leaf isoprene synthase appears to be plastidic, with whole-leaf and intact chloroplast fractionations yielding approximately equal soluble (i.e. stromal) and thylakoid-bound isoprene synthase activities. Although thylakoid-bound isoprene synthase is tightly bound to the thylakoid membrane (M.C. Wildermuth, R. Fall [1996] Plant Physiol 112: 171–182), it can be solubilized by pH 10.0 treatment. The solubilized thylakoid-bound and stromal isoprene synthases exhibit similar catalytic properties, and contain essential cysteine, histidine, and arginine residues, as do other isoprenoid synthases. In addition, two regulators of foliar isoprene emission, leaf age and light, do not alter the percentage of isoprene synthase activity in the bound or soluble form. The relationship between the isoprene synthase isoforms and the implications for function and regulation of isoprene production are discussed.  相似文献   

10.
Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.  相似文献   

11.
12.
Genetic identity and relatedness of the durum wheat Graziella Ra, four Italian commercial durum cultivars (Cappelli, Grazia, Flaminio and Svevo) and Kamut were evaluated using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs) and α-gliadin gene sequence analysis. Our primary objective was to study molecular genetic diversity in such a set of wheats including three modern (Grazia, Flaminio and Svevo) and three older (Cappelli, Kamut and Graziella Ra) durum accessions. Specifically, we aimed at determining the relationship between the historic accession Graziella Ra and Kamut, which is considered an ancient relative of the durum subspecies. Obtained results revealed that (1) both AFLP and SSR molecular markers detected highly congruent patterns of genetic diversity among the accessions showing nearly similar efficiency; (2) for AFLPs, percentage of polymorphic loci within accession ranged from 6.57% to 19.71% (mean, 12.77%) and for SSRs, from 0% to 57.14% (mean, 28.57%); (3) principal component analysis of genetic distance among accessions showed the first two axes accounting for 58.03% (for AFLPs) and 61.60% (for SSRs) of the total variability; (4) for AFLPs, molecular variance was partitioned into 80% (variance among accessions) and 20% (within accession) and for SSRs, into 73% (variance among accessions) and 27% (within accession); (5) cluster analysis of AFLPs and SSRs datasets displayed Graziella Ra and Kamut constantly grouped into the same cluster; and (6) molecular comparison of α-gliadin gene sequences showed Graziella Ra and Kamut in separate clusters. All these findings support the hypothesis that Graziella Ra and Kamut, although very similar, at least in the little part of the genome investigated by molecular markers employed in this study, might be considered as distinct accessions.  相似文献   

13.
The lipopolysaccharide of Pseudomonas aeruginosa PAO1 contains an unusual sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA). wbpB, wbpE, and wbpD are thought to encode oxidase, transaminase, and N-acetyltransferase enzymes. To characterize their functions, recombinant proteins were overexpressed and purified from heterologous hosts. Activities of His6-WbpB and His6-WbpE were detected only when both proteins were combined in the same reaction. Using a direct MALDI-TOF mass spectrometry approach, we identified ions that corresponded to the predicted products of WbpB (UDP-3-keto-d-GlcNAcA) and WbpE (UDP-d-GlcNAc3NA) in the coupled enzyme-substrate reaction. Additionally, in reactions involving WbpB, WbpE, and WbpD, an ion consistent with the expected product of WbpD (UDP-d-GlcNAc3NAcA) was identified. Preparative quantities of UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA were enzymatically synthesized. These compounds were purified by high-performance liquid chromatography, and their structures were elucidated by NMR spectroscopy. This is the first report of the functional characterization of these proteins, and the enzymatic synthesis of UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA.Gram-negative organisms such as Pseudomonas aeruginosa produce lipopolysaccharide (LPS)4 as an essential component of the outer leaflet of the outer membrane. LPS can be conceptually divided into three parts: lipid A, which anchors LPS into the membrane; core oligosaccharide, which contributes to membrane stability; and the O-antigen, which is a polysaccharide that extends away from the cell surface. In P. aeruginosa, two types of O-antigen are observed: A-band O-antigen, which is common to most strains, and B-band O-antigen, which is variable and therefore used as the basis of the International Antigenic Typing Scheme (1). P. aeruginosa serotypes O2, O5, O16, O18, and O20 collectively belong to serogroup O2, because they all share common backbone sugar structures in their O-antigen repeat units consisting of two di-N-acetylated uronic acids and one 2-acetamido-2,6-dideoxy-d-galactose (N-acetyl-d-fucosamine). The minor structural variations in the O-antigen repeat units that differentiate this serogroup into five serotypes are: the type of glycosidic linkage between O-units (alpha versus beta) that is formed by the O-antigen polymerase (Wzy), isomers present (d-mannuronic or l-guluronic acid), and acetyl group substituents (24). The B-band O-antigen of P. aeruginosa PAO1 (serotype O5) contains a repeating trisaccharide of 2-acetamido-3-acetamidino-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAmA), 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA), and 2-acetamido-2,6-dideoxy-d-galactose (3).The biosynthesis of the two mannuronic acid derivatives has yet to be fully understood and has been the subject of investigation by our group. To produce UDP-d-ManNAc3NAcA, a five-step pathway has been proposed (Fig. 1) that requires the products of five genes localized to the B-band O-antigen biosynthesis cluster (5). The O-antigen biosynthesis cluster was shown to be identical for all serotypes within serogroup O2, which further underscores the high similarity between these serotypes (5). The five genes, including wbpA, wbpB, wbpE, wbpD, and wbpI, have been shown to be essential for B-band LPS biosynthesis, because knockout mutants of each of these genes are deficient in B-band O-antigen (68). Homologs of all five of the proteins required for the UDP-d-ManNAc3NAcA biosynthesis pathway are conserved in other bacterial pathogens, including Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica. Cross-complementation of P. aeruginosa knockout mutants lacking wbpA, wbpB, wbpE, wbpD, or wbpI with the homologues from B. pertussis could fully restore LPS production in the P. aeruginosa LPS mutants, suggesting that the genes from B. pertussis are functional homologs of the wbp genes (7). Homologs of these genes could be identified in diverse bacterial species, demonstrating the importance of UDP-d-ManNAc3NAcA biosynthesis beyond its role in P. aeruginosa (7).Open in a separate windowFIGURE 1.Proposed pathway for the biosynthesis of UDP-d-ManNAc3NAcA in P. aeruginosa PAO1. The full names of the sugars are as follows: GlcNAc, 2-acetamido-2-deoxy-d-glucose; GlcNAcA, 2-acetamido-2-deoxy-d-glucuronic acid; 3-keto-d-GlcNAcA, 2-acetamido-2-deoxy-d-ribo-hex-3-uluronic acid; GlcNAc3NA, 2-acetamido-3-amino-2,3-dideoxy-d-glucuronic acid; GlcNAc3NAcA, 2,3-diacetamido-2,3-dideoxy-d-glucuronic acid; ManNAc3NAcA, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid. Adapted from Ref. 8.The first enzyme of the UDP-d-ManNAc3NAcA biosynthesis pathway, WbpA, is a 6-dehydrogenase that converts UDP-2-acetamido-2-deoxy-d-glucose (N-acetyl-d-glucosamine; UDP-d-GlcNAc) to UDP-2-acetamido-2-deoxy-d-glucuronic acid (N-acetyl-d-glucosaminuronic acid, UDP-d-GlcNAcA) using NAD+ as a coenzyme (9) (Fig. 1). Following this, the second step in UDP-d-ManNAc3NAcA biosynthesis is proposed to be an oxidation reaction catalyzed by WbpB, forming UDP-2-acetamido-2-deoxy-d-ribo-hex-3-uluronic acid (3-keto-d-GlcNAcA), which in turn is used as the substrate for transamination by WbpE, creating UDP-2-acetamido-3-amino-2,3-dideoxy-d-glucuronic acid (d-GlcNAc3NA).This residue is thought to be the substrate for WbpD, a putative N-acetyltransferase of the hexapeptide acyltransferase superfamily (10) that requires acetyl-CoA as a co-substrate (8). WbpD has been proposed to synthesize UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid (UDP-d-GlcNAc-3NAcA), which is utilized in the B-band O-antigen of P. aeruginosa serotype O1. In P. aeruginosa serogroup O2, the UDP-d-GlcNAc3NAcA is then epimerized by WbpI to create the UDP-d-ManNAc3NAcA required for incorporation into B-band LPS (11). A derivative of UDP-d-ManNAc3NAcA is also used in the synthesis of B-band O-antigen of P. aeruginosa serogroup O2. UDP-d-ManNAc3NAmA is thought to be produced through additional modification of UDP-d-ManNAc3NAcA via the action of WbpG, an amidotransferase, which has also been demonstrated to be essential for the production of B-band O-antigen (12, 13).In the current study, our aim was to define the function of WbpB, WbpE, and WbpD, because only genetic evidence has previously been given for the involvement of wbpB and wbpE (7), and the reaction catalyzed by WbpD could not be demonstrated due to the unavailability of its presumed substrate, UDP-d-GlcNAc3NA (8). The functional characterization of these proteins is also important for understanding LPS biosynthesis in B. pertussis, because the genes in the LPS locus of this species, wlbA, wlbC, and wlbB, could cross-complement knockouts of wbpB, wbpE, and wbpD, respectively, when expressed in P. aeruginosa PAO1 (7). Furthermore, these three proteins form a cassette for the generation of C-3 N-acetylated hexoses and may be important for the biosynthesis of a variety of other sugars. Capillary electrophoresis and MALDI-TOF mass spectrometry were used to analyze reaction mixtures of WbpB and WbpE and showed that the expected products were produced only when both enzymes were present together. Achieving the enzymatic synthesis of the product of both enzymes, which was demonstrated to be UDP-d-GlcNAc3NA by 1H NMR spectroscopy, was a key breakthrough, because this rare sugar has never before been produced by any means. UDP-d-GlcNAc3NA was also essential for use as the substrate of WbpD, which not only allowed us to determine the enzymatic activity of this protein but also allowed the enzymatic synthesis of UDP-d-GlcNAc3NAcA to be achieved as well. Although this sugar had previously been produced through a 17-step chemical synthesis (11, 14), the 4-step concurrent enzymatic reaction demonstrates the advantage of linking chemistry with biology and represents a significant saving of both time and reagents as compared with chemical synthesis. Finally, our data also showed the success in reconstituting in vitro the 5-step pathway for the biosynthesis of UDP-d-ManNAc3NAcA in P. aeruginosa.  相似文献   

14.
Roots of wheat seedlings (Triticum aestivum L. cv. Weibulls Starke) were cooled (+1°C) for 24 h while the shoots were kept at 25°C. The treatment induced an increased water deficit in the leaves. Fresh weight, dry weight, and the uptake and distribution of potassium and calcium were measured before and after cooling. Growth, measured both as fresh weight and dry weight increase, was reduced during the cold treatment. Afterwards (at 20°C), growth recovered to nearly pre-stress rates. Analysis of the potassium fluxes in and out of the roots by 86Rb techniques showed that influx, and to a lesser extent efflux, were inhibited at low temperature. The result was a net potassium uptake rate of one-third that of unstressed plants. After the cooling period the potassium influx increased to the rate of control plants. The potassium efflux increased to one and one-half times the rate of unstressed wheat so that net uptake was negative. The increase in potassium efflux was explained by a higher permeability of the root cell membranes after cooling. The net uptake of calcium was reduced to one-third by root cooling. Contrary to potassium uptake, calcium uptake increased under post-stress conditions, partly due to a low efflux rate. During root cooling there was a redistribution of dry matter from the leaves down towards the lower part of the shoot. Afterwards the original distribution of dry matter was reestablished. The net flow of potassium and calcium followed a similar pattern as dry matter, suggesting a growth-regulated flow.  相似文献   

15.
Little is known about transport of Zn from leaves to other plantorgans. The present study tested a range of Zn forms appliedfoliarly for their suitability to provide adequate Zn nutritionto wheat (Triticum aestivum L.). Transport of65Zn applied eitherto leaves or to one side of the root system was also studied.Inorganic (ZnO, ZnSO4) and chelated sources of Zn (ZnEDTA, glycine-chelatedBiomin Zn) applied foliarly provided sufficient Zn for vigorousgrowth. Zinc concentrations in roots and shoots were in thesufficiency range, except in the -Zn control. Foliar treatmentswith ZnSO4and chelated Zn forms resulted in shoot Zn concentrationsin 7-week-old plants being about two-fold greater than thosein plants supplied with Zn in the root environment or via foliarspray of ZnO. Adding surfactant to foliar sprays containingchelated forms of Zn did not cause negative growth effects,but surfactant added to ZnO or ZnSO4foliar sprays decreasedshoot growth. Adding urea to the ZnO foliar spray had no effecton shoot growth. Foliarly-applied65Zn was translocated to leavesabove and below the treated leaf as well as to the root tips.Stem girdling confirmed that65Zn transport toward lower leavesand roots was via the phloem. Split-root experiments showedintensive accumulation of65Zn in the stem and transport to allleaves as well as to the root tips in the non-labelled sideof the root system. Foliar application of Zn in inorganic ororganic form is equally suitable for providing adequate Zn nutritionto wheat. Phloem transport of Zn from leaves to roots was demonstrated.Copyright 2001 Annals of Botany Company Foliar spraying, phloem, surfactant, urea, xylem, wheat, zinc  相似文献   

16.
Journal of Plant Growth Regulation - A field trial was performed to study the effect of zinc (Zn) and sulfur (S) on yield and uptake by wheat crop at research farm, the University of Agriculture...  相似文献   

17.
Analysis of the equilibrium binding of [3H]-neurotensin(1-13) at 25 degrees C to its receptor sites in bovine cortex membranes indicated a single population of sites with an apparent equilibrium dissociation constant (KD) of 3.3 nM and a density (Bmax) of 350 fmol/mg protein (Hill coefficient nH = 0.97). Kinetic dissociation studies revealed the presence of a second class of sites comprising less than 10% of the total. KD values of 0.3 and 2.0 nM were obtained for the higher and lower affinity classes of sites, respectively, from association-dissociation kinetic studies. The binding of [3H]neurotensin was decreased by cations (monovalent and divalent) and by a nonhydrolysable guanine nucleotide analogue. Competition studies gave a potency ranking of [Gln4]neurotensin greater than neurotensin(8-13) greater than neurotensin(1-13). Smaller neurotensin analogues and neurotensin-like peptides were unable to compete with [3H]neurotensin. Stable binding activity for [3H]neurotensin in detergent solution (Kd = 5.5 nM, Bmax = 250 fmol/mg protein, nH = 1.0) was obtained in 2% digitonin/1 mM Mg2+ extracts of membranes which had been preincubated (25 degrees C, 1 h) with 1 mM Mg2+ prior to solubilization. Association-dissociation kinetic studies then revealed the presence of two classes of sites (KD1 = 0.5 nM, KD2 = 3.6 nM) in a similar proportion to that found in the membranes. The solubilized [3H]-neurotensin activity retained its sensitivity to cations and guanine nucleotide.  相似文献   

18.
ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.  相似文献   

19.
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl and K+. The postshrinking volume recovery is achieved by K+ and Cl influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.  相似文献   

20.
In this study, we performed the molecular and biochemical characterization of an ecto-enzyme present in Trypanosoma rangeli that is involved with the hydrolysis of extracellular inorganic pyrophosphate. PCR analysis identified a putative proton-pyrophosphatase (H+-PPase) in the epimastigote forms of T. rangeli. This protein was recognized with Western blot and flow cytometry analysis using an antibody against the H+-PPase of Arabidopsis thaliana. Immunofluorescence microscopy confirmed that this protein is located in the plasma membrane of T. rangeli. Biochemical assays revealed that the optimum pH for the ecto-PPase activity was 7.5, as previously demonstrated for other organisms. Sodium fluoride (NaF) and aminomethylenediphosphonate (AMDP) were able to inhibit approximately 75% and 90% of the ecto-PPase activity, respectively. This ecto-PPase activity was stimulated in a dose-dependent manner by MgCl2. In the presence of MgCl2, this activity was inhibited by millimolar concentrations of CaCl2. The ecto-PPase activity of T. rangeli decreased with increasing cell proliferation in vitro, thereby suggesting a role for this enzyme in the acquisition of inorganic phosphate (Pi). Moreover, this activity was modulated by the extracellular concentration of Pi and increased approximately two-fold when the cells were maintained in culture medium depleted of Pi. All of these results confirmed the occurrence of an ecto-PPase located in the plasma membrane of T. rangeli that possibly plays an important role in phosphate metabolism of this protozoan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号