首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspirin-like drugs (ALD) enhance T cell proliferation by suppressing PG production in monocytes. Normal human T cells do not produce any eicosanoids. Therefore we studied whether ALD would affect purified T cells directly. We found that ALD enhanced the proliferation and IL-2 production of T cells in the absence of monocytes. This effect did not depend on arachidonic acid metabolism as no lipoxygenase products and only nonsuppressive levels of cyclooxygenase products were detected in T cell cultures. Several possible mechanisms of the ALD effect were ruled out including 1) enhanced mitogen binding, 2) induction of activation markers (IL-2R, transferrin receptor, HLA-DR) on the cell surface, 3) down-regulation of suppressor cells. ALD caused a rise in [Ca2+]i which appeared to reflect an influx of Ca2+ from the extracellular milieu and was more pronounced in CD4+ cells. The rise in intracellular levels of Ca2+, that is considered a necessary second messenger for T cell activation, may prime these cells for an enhanced response to mitogens. In addition, ALD increased T cell membrane fluidity but only at higher concentrations than those found to enhance proliferation. The pharmacologic effect of ALD on T cells presents a possible new immunoenhancing potential of these drugs and may have therapeutic use in immunosuppressed individuals.  相似文献   

2.
Endogenous regulators of endothelial cell proliferation have not been clearly defined. We investigated whether the cyclooxygenase and/or lipoxygenase metabolites are involved in this process, and report that lipoxygenase products can modulate endothelial cell growth. Nordihydroguaiaretic acid--a lipoxygenase inhibitor, inhibited endothelial cell proliferation as well as DNA synthesis. 5,8,11,14-Eicosatetraynoic acid--an inhibitor of both lipoxygenase and cyclooxygenase also inhibited endothelial cell DNA synthesis, while indomethacin--a selective cyclooxygenase inhibitor did not affect cell proliferation or DNA synthesis. While arachidonic acid stimulated DNA synthesis, this effect was completely abolished by nordihydroguaiaretic acid. These results demonstrate that products of the lipoxygenase pathway can affect endothelial cell proliferation.  相似文献   

3.
The effects of various lipoxygenase metabolites of arachidonic acid (AA) were investigated on the growth of freshly isolated human bone marrow mononuclear cells and marrow stromal cell cultures. LTB4, LXA4, LXB4, 12-HETE and 15-HETE (1 microM) decreased [3H]-thymidine incorporation on marrow stromal cell cultures without affecting cell number. Only 12-HETE showed a dose-response effect on [3H]-thymidine incorporation. While LTB4 (1 microM) decreased thymidine incorporation on marrow mononuclear cells, LTC4, LXA4, LXB4, 12-HETE and 15-HETE had no effect. The lipoxygenase inhibitor NDGA had no effect on both cell types suggesting no role of endogenous lipoxygenase metabolites on cell growth. These results suggest no important role of lipoxygenase metabolites of AA on the proliferation of human marrow mononuclear cells and marrow stromal cell cultures.  相似文献   

4.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

5.
The signal transduction pathways through which growth factors regulate vascular cell growth are not fully understood. Recent studies suggest that metabolites of the lipoxygenase pathway may be involved in vascular cell growth. We have measured the effect of the lipoxygenase pathway inhibitors nordihydroguiaretic acid (NDGA), 5,6-dehydroarachidonic acid, and baicalein on bovine capillary endothelial cell (EC) and aortic smooth muscle cell (SMC) growth in the presence or the absence of growth factors. NDGA totally suppressed serum-stimulated EC and SMC growth as well as growth factor-stimulated proliferation over a 9-day time course. Removal of the inhibitor revealed that the inhibitory effect of NDGA was reversible and not due to cytotoxicity. The morphology of NDGA-treated EC was changed in a reversible manner from the characteristic polygonal to spindle shape. The 5-lipoxygenase inhibitor 5,6-dehydroarachidonic acid had no effect on vascular cell proliferation, but inhibition of 12-lipoxygenase with baicalein blocked both EC and SMC cell growth in a dose-dependent manner, in the presence and the absence of growth factors. Indomethacin, an inhibitor of the cyclooxygenase pathway, had no effect on EC and SMC proliferation. Quinacrine and oleyloxyethylphosphorycholine inhibition of the phospholipase A2-catalyzed release of arachidonic acid from membrane phospholipids blocked growth factor- and serum-stimulated proliferation of EC and SMC. These results suggested that arachidonic acid metabolites are critical intermediaries in the regulation of vascular cell growth.  相似文献   

6.
Arachidonic acid metabolites regulate interleukin-1 production   总被引:5,自引:0,他引:5  
We have investigated the role of arachidonic acid metabolites in the regulation of interleukin-1 production by murine peritoneal macrophages. Indomethacin a potent inhibitor of prostaglandin synthesis caused a dose-dependent augmentation of lipopolysaccharide induced interleukin production (up to 7-fold at 5 microM). In contrast, lipoxygenase inhibitors, nordihydroguarietic acid and nafazatrom had no effect at doses that did not significantly decrease prostaglandin synthesis. Added to lipopolysaccharide stimulated cultures, PGE2 was also augmented by indomethacin but unlike lipopolysaccharide treated cultures was suppressed by nordihydroguarietic acid. These data suggest that arachidonate metabolites may be potent autoregulators of macrophage interleukin-1 production.  相似文献   

7.
Brugia malayi L3 molt to the L4 stage in serum-free cultures supplemented with arachidonic, linoleic, or linolenic acids and the basidiomycetous yeast Rhodotorula minuta. These fatty acids are capable of entering the eicosanoid pathway of arachidonate metabolism, the pathway responsible for generating a number of biologically active mediators, including prostaglandins, leukotrienes, and lipoxins. To determine whether this pathway was required for L3 development, we added dual inhibitors of cyclooxygenase and lipoxygenase to in vitro cultures containing B. malayi L3. These compounds significantly inhibited L3 molting. To evaluate whether 1 or both of these pathways of arachidonate metabolism were involved in molting, we tested drugs inhibiting either cyclooxygenase or lipoxygenase. Lipoxygenase inhibitors blocked L3 molting, whereas cyclooxygenase inhibitors did not. To assess whether enzymes operating downstream of lipoxygenase were also involved in L3 molting, we added inhibitors of enzymes involved in leukotriene synthesis and found they were also capable of preventing development. We tested the same inhibitor panel on Dirofilaria immitis L3. A single lipoxygenase inhibitor and inhibitors of 2 different enzymes operating downstream of lipoxygenase disrupted D. immitis development. These results demonstrate that a lipoxygenase pathway product is required for molting of the infective stage larvae of filarial parasites.  相似文献   

8.
Thromboxane-induced pulmonary vasoconstriction: involvement of calcium   总被引:3,自引:0,他引:3  
Infusion of tert-butyl hydroperoxide (t-bu-OOH) or arachidonic acid into rabbit pulmonary arteries stimulated thromboxane B2 (TxB2) production and caused pulmonary vasoconstriction. Both phenomena were blocked by cyclooxygenase inhibitors or a thromboxane synthase inhibitor. The increase in pulmonary arterial pressure caused by either t-bu-OOH or arachidonic acid infusion correlated with the concentration of TxB2 in the effluent perfusate. The concentration of TxB2 in the effluent perfusate, however, was always 10-fold greater after arachidonic acid infusion. In the rabbit pulmonary vascular bed lipoxygenase products did not appear involved in the vasoactive response to t-bu-OOH or exogenous arachidonic acid infusion. Calcium entry blockers or a calcium-free perfusate prevented the thromboxane-induced pulmonary vasoconstriction. Calmodulin inhibitors also blocked the pulmonary vasoconstriction induced by t-bu-OOH without affecting the production of TxB2 or prostacyclin. These results suggest that thromboxane causes pulmonary vasoconstriction by increasing cytosol calcium concentration.  相似文献   

9.
The influence of inhibitors of different lipoxygenases (LOX) on the growth of human tumor cells with different profiles of synthesized eicosanoids was studied. The studied LOX inhibitors had virtually no influence on the growth of A549 cells actively synthesizing cyclooxygenase and lipoxygenase metabolites of arachidonic acid (AA). The inhibitor of 12-LOX, baicalein, significantly inhibited proliferation in cultures of A431 epidermoid carcinoma cells with a characteristic domination of the major lipoxygenase metabolite of AA, 12-hydroxyeicosatetraenoic acid (12-HETE), in the profile of synthesized eicosanoids and reduced to 70% the incorporation of [3H]thymidine into DNA. Treatment of these cultures with 12-HETE virtually restored the growth potential of the tumor cells. The findings suggest that the lipoxygenase metabolite of AA, 12-HETE, is a growth-limiting factor for tumor cells of definite type.  相似文献   

10.
The relative contributions of arachidonic acid and protein kinase C during GnRH-stimulated LH release were investigated in cultured rat anterior pituitary cells. Maximal or near-maximal concentrations of arachidonic acid or the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, were less effective than a maximal dose of GnRH in stimulating LH release. However, the effect of a combination of arachidonic acid and phorbol ester was equivalent with that of GnRH. The protein kinase C inhibitor, retinal, significantly reduced GnRH- and phorbol-induced, but not arachidonic acid-stimulated, LH release. The lipoxygenase inhibitors, 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid, partially inhibited GnRH- and arachidonic acid-stimulated, but not phorbol-induced, LH secretion. Simultaneous addition of retinal and either lipoxygenase inhibitor completely abolished LH responses elicited by GnRH, as well as by combined treatment with arachidonic acid and the phorbol ester. These results suggest that hormone release is mediated by phospholipid-dependent mechanisms that are coordinated during the stimulation of LH secretion by GnRH.  相似文献   

11.
Cytotoxic T lymphocyte (CTL)-mediated lysis of target cells was inhibited by 5,8,11,14-eicosatetraynoic acid (ETYA) and other inhibitors of the lipoxygenase pathway at concentrations that inhibited arachidonic acid metabolism in mixed lymphocyte cultures. Inhibition was reversible and selective for the "lethal hit" stage in the CTL-target interaction. Studies to define CTL-specific arachidonic acid metabolites demonstrated that cloned CTL populations have little or no capacity to metabolize arachidonic acid. Therefore, inhibitor actions appear to be independent of the effects on CTL arachidonic acid metabolism. Alternative explanations for inhibitory effects are discussed.  相似文献   

12.
Mepacrine, an inhibitor of arachidonic acid mobilisation, and NDGA, a lipoxygenase inhibitor, were found to impair the aggregation of SV40-3T3 cells but the effects could not be unequivocally dissociated from non-specific actions of the drugs. No effect on aggregation was observed even after prolonged exposure of the cells to the cyclooxygenase inhibitors aspirin and indomethacin. These results argue against a possible regulatory role for endogenous AA metabolites in intercellular adhesion of SV40-3T3 cells.  相似文献   

13.
There is evidence from whole animal and intact lung studies that prostaglandins are involved in the regulation of surfactant secretion. To explore this further we examined the effect of arachidonic acid on secretion of phosphatidylcholine in primary cultures of adult rat type II pneumocytes. Arachidonic acid stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 1-8 microM. Arachidonic acid (8 microM) stimulated secretion by 79% from a basal rate of 1.17% total cellular phosphatidylcholine secreted in 90 min to 2.09%. We examined the effects of inhibitors of arachidonic acid metabolism on the stimulatory effect. Nordihydroguairaretic acid (0.1 microM), a lipoxygenase inhibitor, reduced the stimulatory effect by 64%. The same concentration of cyclooxygenase inhibitors had no effect. We conclude that arachidonic acid metabolites stimulate surfactant secretion in type II cells. Whether this effect is mediated by leukotrienes or other products remains to be established.  相似文献   

14.
The relation between platelet-derived growth factor (PDGF)-induced smooth muscle cell migration, measured in Boyden chambers, and cellular arachidonic acid cascade was studied by using rat aortic smooth muscle cells. Partially purified PDGF stimulated cell migration significantly at a concentration of 1.33-133.0 micrograms/ml. Treatment of the cells with 10(-4)M of 5,8,11,14-eicosatetraynoic acid, an inhibitor of lipoxygenase and cyclooxygenase, and 10(-4)M of caffeic acid, a specific inhibitor of lipoxygenase, caused a significant suppression of PDGF-induced cell migration. Treatment with indomethacin, an inhibitor of cyclooxygenase, did not affect cell migration. These data indicate the involvement of a lipoxygenase product(s) of arachidonic acid in PDGF-associated smooth muscle cell migration.  相似文献   

15.
Eosinophil stimulation promoter (ESP) is a murine lymphokine that enhances the migration of eosinophils. Exogenous arachidonic acid between 0.5 and 2 micrograms/ml potentiated the activity of ESP on murine eosinophil migration, whereas such concentrations did not affect migration in the absence of ESP. Among the lipoxygenase products identified from an enriched population of murine eosinophils, leukotriene B4 (optimal activity at 100 ng/ml) and 12-HETE (optimal activity at 2 micrograms/ml) stimulated migration of these cells. Another lipoxygenase product from these cells 15-HETE inhibited ESP-induced migration; between 5 and 10 micrograms/ml 15-HETE decreased by one-half both stimulated migration and 12-HETE biosynthesis. Structurally diverse drugs at concentrations that inhibited HETE biosynthesis inhibited ESP-induced migration. The concentrations that decreased migration activity by one-half were 5 microM NDGA, 10 microM ETYA, and 150 microM BW755C. Aspirin and indomethacin at concentrations reported to inhibit prostaglandin biosynthesis did not substantially inhibit ESP activity, but concentrations of indomethacin above 20 microM caused concentration-dependent inhibition of migration. The selective lipoxygenases inhibitor 134,7,10,13-eicosatetraynoic acid was more potent than ETYA in inhibition of ESP-induced migration, and the selective cyclooxygenase inhibitor 6,9,12-octadecatriynoic acid did not effect inhibition. These results are consistent with the hypothesis that stimulation of eosinophils by the lymphokine ESP involves the generation of lipoxygenase products from arachidonic acid, which positively and negatively regulate the migratory activities of these cells.  相似文献   

16.
Using cultured bovine aortic endothelial cells, the effects of MCI-186, a radical scavenger, were studied on arachidonic acid metabolism and on the cell injury caused by 15-HPETE. MCI-186 at 3 X 10(-5) M enhanced prostacyclin production in the intact endothelial cells without affecting phospholipase A2. When endothelial cell homogenates were used as an enzyme source, it was found that MCI-186 stimulated the conversion of arachidonic acid to prostacyclin like phenol, perhaps by trapping OH radicals produced in the process of the conversion of PGG2 to PGH2. On the other hand, MCI-186 was found to inhibit lipoxygenase metabolism of arachidonic acid in cell free homogenates of rat basophilic leukemia cells. The lipoxygenase inhibition caused by 3 X 10(-5) M MCI-186 was almost equivalent to that caused by 3 X 10(-6) M BW 755C. MCI-186 remarkably protected against endothelial cell damage caused by 15-HPETE. 3 X 10(-5) M of 15-HPETE caused endothelial cell death in about 60% of the population: however, pretreatment of the cells with 10(-5) M of MCI-186 or concomitant addition of 10(-5) M of MCI-186 with 15-HPETE to the cultures prevented the cell death completely. These results suggest that MCI-186 may become an unique anti-ischemic drug.  相似文献   

17.
Several investigations have suggested that products of arachidonic acid metabolism have modulatory effects on the development of cellular immunity. In this report we have studied the role of arachidonic acid metabolism in the specific effects of interleukin 1 (IL 1) induction of interleukin 2 (IL 2), and also IL 2 stimulation of proliferation and interferon-gamma (IFN-gamma) production. Utilizing cell lines that are specifically responsive to IL 1 or IL 2, it was found that both interleukins stimulate lipoxygenation of arachidonic acid in their respective target cell. The ability of each interleukin to induce monohydroxyeicosatetraenoic acid (HETE) correlated with the induction of secondary lymphokine secretion. Utilizing selective and partially selective pharmacologic inhibitors of arachidonic acid metabolism, the data suggest that the participation of lipoxygenase activity is required for both IL 1 induction of IL 2 production and IL 2 regulation of proliferation and IFN-gamma secretion. The same requirement for lipoxygenase activity was seen when phorbol myristate acetate (PMA) was used as a secretory stimulant, suggesting a similar mode of action for stimulation-secretory activity between PMA and interleukins. Studies performed with an endogenous inhibitor of 5-lipoxygenase (15-HETE) demonstrated the requirement of this enzyme system for IL 2-dependent proliferation and IFN-gamma production. Although leukotrienes could replace IL 2 for IFN-gamma secretion, they had no effect on IL 2 growth promotion. The results suggest that both IL 1 and IL 2, and PMA, may share the lipoxygenase pathway of arachidonic acid metabolism which is a component of the intracellular signal transduction process that regulates secretory activity and/or cellular proliferation.  相似文献   

18.
19.
Acetylcholine and arachidonic acid induced catecholamine secretion from isolated bovine adrenal medullary cells. Protease inhibitors and calmodulin inhibitors inhibited catecholamine secretion induced by acetylcholine but did not inhibit the secretion induced by arachidonic acid. BW 755-C, a lipoxygenase inhibitor, inhibited catecholamine release induced by acetylcholine. These results suggest that a protease and calmodulin are involved in the successive reaction after stimulus-receptor coupling and arachidonic acid or its metabolites might be important in catecholamine secretion from bovine adrenal medullary cells.  相似文献   

20.
The effects of several enzyme inhibitors on arachidonic acid-induced contractions of guinea pig lung strips were studied. Varying concentrations of indomethacin, an inhibitor of cyclooxygenase, produced only a limited effect on contraction of tissue strips. By contrast, nordihydroguaiaretic acid (NDGA), 5,8,11,14-eicosatetraynoic acid (ETYA), and phenidone, which inhibit either lipoxygenase, or both lipoxygenase and cyclooxygenase, caused a dose-related antgonism of the arachidonic acid-induced contraction. The effects of these latter agents were similar to that of FPL 55712. Results indicate that the products of cyclooxygenase are predominantly involved in the early phase and the products of lipoxygenase are predominantly related to the late phase of arachidonic acid-induced contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号