首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Variability of HIV infections.   总被引:3,自引:0,他引:3  
Genetic variation is the hallmark of infections with lentiviruses in general and the human immunodeficiency viruses (HIV-1, HIV-2) in particular. This article reviews both experimental evidence for the variability of the HIV genome during the course of an individual infection and mathematical models that outline the potential importance of antigenic variation as a major factor to drive disease progression. The essential idea is that the virus evades immune pressure by the continuous production of new mutants resistant to current immunological attack. This results in the accumulation of antigenic diversity during the asymptomatic period. The existence of an antigenic diversity threshold is derived from the asymmetric interaction between the virus quasispecies and the CD4 cell population: CD4 cells mount immune responses some of which are directed against specific HIV variants, but each virus strain can induce depletion of all CD4 cells and therefore impair immune responses regardless of their specificity. Therefore, increasing HIV diversity enables the virus population to escape from control by the immune system. In this context the observed genetic variability is responsible for the fact that the virus establishes a persistent infection without being cleared by the immune response and induces immunodeficiency disease after a long and variable incubation period. Mathematical biology has revealed a novel mechanism for viral pathogenesis.  相似文献   

3.
HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.  相似文献   

4.
To understand the high variability of the asymptomatic interval between primary human immunodeficiency virus type 1 (HIV-1) infection and the development of AIDS, we studied the evolution of the C2-V5 region of the HIV-1 env gene and of T-cell subsets in nine men with a moderate or slow rate of disease progression. They were monitored from the time of seroconversion for a period of 6 to 12 years until the development of advanced disease in seven men. Based on the analysis of viral divergence from the founder strain, viral population diversity within sequential time points, and the outgrowth of viruses capable of utilizing the CXCR4 receptor (X4 viruses), the existence of three distinct phases within the asymptomatic interval is suggested: an early phase of variable duration during which linear increases ( approximately 1% per year) in both divergence and diversity were observed; an intermediate phase lasting an average of 1.8 years, characterized by a continued increase in divergence but with stabilization or decline in diversity; and a late phase characterized by a slowdown or stabilization of divergence and continued stability or decline in diversity. X4 variants emerged around the time of the early- to intermediate-phase transition and then achieved peak representation and began a decline around the transition between the intermediate and late phases. The late-phase transition was also associated with failure of T-cell homeostasis (defined by a downward inflection in CD3(+) T cells) and decline of CD4(+) T cells to 相似文献   

5.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.  相似文献   

6.
HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for vaccine design.  相似文献   

7.
In this paper, we analyse mathematical models for the interaction between virus replication and immune responses. We show that the immune system can provide selection pressure for or against viral diversity. The paper provides new insights into the relationship between virus load (=the abundance of virus in an infected individual) and antigenic diversity. Antigenic variation can increase virus load during infections, but the correlation between load and diversity in comparisons among different infected individuals can be positive or negative, depending on whether individuals differ in their cross-reactive or strain-specific immune responses. We derive two models: our first model applies to any replicating parasite that can escape from immune responses; our second model includes immune function impairment, and specifically describes infections with the human immunodeficiency virus (HIV).  相似文献   

8.
Neutralizing antibodies are considered to be an important protective parameter used in HIV-l vaccine evaluation.However,the exact role that neutralizing antibodies plays in controlling the disease prog...  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) viral setpoint during the disease-free interval has been strongly associated with future risk of disease progression. An awareness of the correlation between viral setpoint and HIV-1 genetic evolution over time is important in the understanding of viral dynamics and infection. We examined genetic diversity in HIV-1 CRF02_A/G-IbNG-infected seroincident women in Dakar, Senegal; determined whether a viral setpoint kinetic pattern existed for CRF02_A/G-IbNG during the disease-free interval; and correlated viral load level and diversity. Samples were drawn during the disease-free interval from consenting CRF02_A/G-IbNG-infected, antiretroviral therapy-na?ve female commercial sex workers in Dakar, Senegal. Based on sequential plasma RNA values, low and high viral setpoint groups were established. Intrapatient diversity and divergence over time was determined from earlier and later time point DNA samples from each person. Most individuals followed the viral setpoint paradigm. For each 1/-/log(10) copy/ml of plasma increase in viral load, intrapatient diversity increased by 1.4% (P = 0.028). A greater diversification rate was observed in the high viral setpoint group than in the low viral setpoint group (P = 0.01). Greater nucleotide (P = 0.015) and amino acid (P = 0.048) divergences and a greater nucleotide divergence rate (P = 0.03) were found in the high viral setpoint group. There was no difference between the groups in the ratio of the number of nonsynonymous substitutions per nonsynonymous site to the number of synonymous substitutions per synonymous site. The greater intrapatient diversity, divergence, and diversification rates observed in the high viral setpoint group supports the notion that diversity is driven by cycles of viral replication resulting in accumulated mutations. Recognizing diversity potential based on viral load levels in individuals may inform the design of vaccines and therapies.  相似文献   

10.
Extraordinary viral sequence diversity and rapid viral genetic evolution are hallmarks of hepatitis C virus (HCV) infection. Viral sequence evolution has previously been shown to mediate escape from cytotoxic T-lymphocyte (CTL) and neutralizing antibody responses in acute HCV infection. HCV evolution continues during chronic infection, but the pressures driving these changes are poorly defined. We analyzed plasma virus sequence evolution in 5.2-kb hemigenomes from multiple longitudinal time points isolated from individuals in the Irish anti-D cohort, who were infected with HCV from a common source in 1977 to 1978. We found phylogenetically distinct quasispecies populations at different plasma time points isolated late in chronic infection, suggesting ongoing viral evolution and quasispecies replacement over time. We saw evidence of early pressure driving net evolution away from a computationally reconstructed common ancestor, known as Bole1b, in predicted CTL epitopes and E1E2, with balanced evolution toward and away from the Bole1b amino acid sequence in the remainder of the genome. Late in chronic infection, the rate of evolution toward the Bole1b sequence increased, resulting in net neutral evolution relative to Bole1b across the entire 5.2-kb hemigenome. Surprisingly, even late in chronic infection, net amino acid evolution away from the infecting inoculum sequence still could be observed. These data suggest that, late in chronic infection, ongoing HCV evolution is not random genetic drift but rather the product of strong pressure toward a common ancestor and concurrent net ongoing evolution away from the inoculum virus sequence, likely balancing replicative fitness and ongoing immune escape.  相似文献   

11.
Th1 and th2 responses, HIV-1 coreceptors, and HIV-1 infection.   总被引:3,自引:0,他引:3  
The Th1/Th2 model provides an interesting paradigm for understanding several pathophysiological processes and possibly for developing new immunotherapeutical strategies. In HIV-1 infection the interaction between the type of HIV-1 strain and the pathway of the ongoing T-cell effector response, despite its complexity, may represent one of the crucial mechanisms in determining the outcome of virus infection. While the possibility of an HIV-1-driven Th1 to Th2 switch of the immune response is still debated, evidence is accumulating to suggest that cytokines produced during an immune response can contribute to promote a selective pressure toward the evolution of HIV-1 viral strains with different tropism. This article summarizes the results of our recent studies in which the expression of CCR5 and CXCR4 HIV-1 co-receptors, as well as the activity of R5- or X4- tropic strains of HIV-1 in different in vitro models of Th1/Th2 polarization was analyzed.  相似文献   

12.
This study examined the relationship between ex vivo human immunodeficiency virus type 1 (HIV-1) fitness and viral genetic diversity during the course of HIV-1 disease. Primary HIV-1 isolates from 10 patients at different time points were competed against control HIV-1 strains in peripheral blood mononuclear cell (PBMC) cultures to determine relative fitness values. Patient HIV-1 isolates sequentially gained fitness during disease at a significant rate that directly correlated with viral load and HIV-1 env C2V3 diversity. A loss in both fitness and viral diversity was observed upon the initiation of antiretroviral therapy. A possible relationship between genotype and phenotype (virus replication efficiency) is supported by the parallel increases in ex vivo fitness and viral diversity during disease, of which the correlation is largely based on specific V3 sequences. Syncytium-inducing, CXCR4-tropic HIV-1 isolates did have higher relative fitness values than non-syncytium-inducing, CCR5-tropic HIV-1 isolates, as determined by dual virus competitions in PBMC, but increases in fitness during disease were not solely powered by a gradual switch in coreceptor usage. These data provide in vivo evidence that increasing HIV-1 replication efficiency may be related to a concomitant increase in HIV-1 diversity, which in turn may be a determining factor in disease progression.  相似文献   

13.
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3–6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses – using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2–7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.  相似文献   

14.
We analyzed the evolution of the human immunodeficiency virus type 1 (HIV-1) env gene in 12 chronically infected individuals who underwent structured treatment interruptions (STIs). Analyses of length variation and of clonal sequences demonstrated highly unpredictable evolution, which may limit the strengthening of HIV-specific immune responses by STIs because of the variability in exposure to viral antigens.  相似文献   

15.
16.
Infection with human immunodeficiency virus (HIV)-encoding defective nef variants may contribute to a relatively benign course of disease in a minority of long-term nonprogressors (LTNP). We have examined the functions of nef alleles from six individuals belonging to the same cohort of hemophiliacs infected with HIV-1 prior to 1985 and classified as LTNP in 1995. Three out of six individuals have progressed to HIV disease (late progressors [LP]), whereas the three remainders have maintained their LTNP status at least up to 2003. The nef alleles were obtained from both plasma virus and peripheral blood mononuclear cells of all six individuals in 1995 and 1998. The proportion of sequences containing mutations not yielding Nef expression significantly diminished in 1998 versus that in 1995. Several previously defined functional regions of intact nef alleles were highly conserved. However, the major variant obtained in 1998 from plasma RNA of five out of six individuals significantly reduced HIV infectivity/replication and impaired Nef-mediated CD4 but not major histocompatibility complex class I antigen down-modulation from the cell surface. Thus, functional alterations of the nef gene are present in both LP and LTNP, suggesting that Nef defectiveness in vitro is not necessarily associated with the long-term maintenance of LTNP status. Of interest is the fact that isolates from three out of three LP showed a dual CCR5/CXCR4 coreceptor use (R5X4), in contrast to those from LTNP, which were exclusively R5. Thus, in vivo evolution of gp120 Env to CXCR4 use appears to be associated with HIV disease progression in individuals infected with nef-defective viruses.  相似文献   

17.
We describe a mathematical model and Monte Carlo (MC) simulation of viral evolution during acute infection. We consider both synchronous and asynchronous processes of viral infection of new target cells. The model enables an assessment of the expected sequence diversity in new HIV-1 infections originating from a single transmitted viral strain, estimation of the most recent common ancestor (MRCA) of the transmitted viral lineage, and estimation of the time to coalesce back to the MRCA. We also calculate the probability of the MRCA being the transmitted virus or an evolved variant. Excluding insertions and deletions, we assume HIV-1 evolves by base substitution without selection pressure during the earliest phase of HIV-1 infection prior to the immune response. Unlike phylogenetic methods that follow a lineage backwards to coalescence, we compare the observed data to a model of the diversification of a viral population forward in time. To illustrate the application of these methods, we provide detailed comparisons of the model and simulations results to 306 envelope sequences obtained from eight newly infected subjects at a single time point. The data from patients were in good agreement with model predictions, and hence compatible with a single-strain infection evolving under no selection pressure. The diversity of the samples from the other two patients was too great to be explained by the model, suggesting multiple HIV-1-strains were transmitted. The model can also be applied to longitudinal patient data to estimate within-host viral evolutionary parameters.  相似文献   

18.
GB virus C (GBV-C), which is highly prevalent among HIV/AIDS, seemed to slow the HIV disease progression. The HIV/GBV-C co-infected individuals may represent an interesting model for the investigation of the role played by HIV infection and/or the immune system in driving the evolution of the GBV-C viral populations. The present study investigated the prevalence and population dynamics of GB virus C in HIV infected individuals representing 13 geographic regions of Hubei Province of China. Approximately 37% of HIV-1 infected individuals were infected with GBV-C and genotype 3 is appeared to be predominant. Utilizing the 196 complete E2 nucleotide sequence data from 10 HIV/GBV-C infected individuals and employing coalescence based phylogenetic approaches; the present study has investigated the intra-host dynamics of GBV-C. The results revealed patient-specific unique GBV-C viral lineages and each viral lineage showed the evidence of rapid population expansion in respective HIV-1 infected patients, thus suggesting HIV-1 was unlikely to have been inhibiting effect on the GBV-C viral replication. GBV-C in all patients has experienced intense purifying selection, suggesting the GBV-C viral invasion and subsequent expansion within the HIV-1 infected hosts without any modification of the functional epitopes at their membrane protein. The finding of within host GBV-C recombinant sequences indicated recombination was one of the significant forces in the evolution and divergence of GBV-C.  相似文献   

19.
Woo J  Robertson DL  Lovell SC 《Journal of virology》2010,84(24):12995-13003
The high rate of HIV-1 evolution contributes to immune escape, enables the virus to escape drug therapy, and may underlie the difficulty of producing an effective vaccine. Identifying constraints on HIV evolution is therefore of prime importance. To investigate this problem, we examined the relationships between sequence diversity, selection, and protein structure. We found that while there was an increase in sequence diversity over time, this variation had a tendency to be limited to specific structural regions. When individual sites were analyzed, there was, in contrast, substantial and widespread evolutionary constraint over gag and env. This constraint was present even in the highly variable envelope proteins. The evolutionary significance of an individual site is indicated by the change in selection pressure along the time course: increasing entropy indicates that the site is evolving predominantly in a more "clock"-like manner, low entropy values with no increase indicate a high degree of constraint, and high entropy values indicate a lack of constraint. Few sites display high degrees of turnover. Mapping these sites onto the three-dimensional protein structure, we found a significant difference between evolutionary rates for regions buried in the core of the protein and those on the surface. This constraint did not change over the time period analyzed and was not subtype dependent, as similar results were found for subtypes B and C. This link between sequence and structure not only demonstrates the limits of recent HIV-1 evolution but also highlights the origins of evolutionary constraint on viral change.  相似文献   

20.
Six donor-recipient clusters of hepatitis C virus (HCV)-infected individuals were studied. For five clusters the period of infection of the donor could be estimated, and for all six clusters the time of infection of the recipients from the donor via blood transfusion was also precisely known. Detailed phylogenetic analyses were carried out to investigate the genomic evolution of the viral quasispecies within infected individuals in each cluster. The molecular clock analysis showed that HCV quasispecies within a patient are evolving at the same rate and that donors that have been infected for longer time tend to have a lower evolutionary rate. Phylogenetic analysis based on the split decomposition method revealed different evolutionary patterns in different donor-recipient clusters. Reactivity of antibody against the first hypervariable region (HVR1) of HCV in donor and recipient sera was evaluated and correlated to the calculated evolutionary rate. Results indicate that anti-HVR1 reactivity was related more to the overall level of humoral immune response of the host than to the HVR1 sequence itself, suggesting that the particular sequence of the HVR1 peptides is not the determinant of reactivity. Moreover, no correlation was found between the evolutionary rate or the heterogeneity of the viral quasispecies in the patients and the strength of the immune response to HVR1 epitopes. Rather, the results seem to imply that genetic drift is less dependent on immune pressure than on the rate of evolution and that the genetic drift of HCV is independent of the host immune pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号