首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
铜绿假单胞菌(Pseudomonas aeruginosa)是一种革兰氏阴性条件致病菌,可对免疫功能低下或损伤的患者造成持续性感染。铜绿假单胞菌能成功感染离不开其自身产生的毒力因子,而这些毒力因子大多数都受群体感应系统(quorum sensing,QS)调控。铜绿假单胞菌有4个QS系统,分别为las系统、rhl系统、pqs系统和iqs系统。2-庚基-3-羟基-4-喹诺酮(Pseudomonas quinolone signal,PQS)作为铜绿假单胞菌pqs系统的信号分子,不仅能够调控许多毒力因子的表达,也能够影响一些微生物和宿主的多种生理过程。本文总结了PQS多种生物学功能,如介导QS系统、调控生物被膜形成、介导外膜囊泡产生及铁摄取、调节宿主免疫活性、介导细胞毒性作用,以及提供种群保护等。本文旨在突出铜绿假单胞菌PQS的功能多样性,并为PQS新功能研究和抗菌药物的研发提供指导。  相似文献   

2.
耐药菌的日益增多给临床治疗带来巨大的困难,揭示耐药机制成为遏制耐药菌的基本环节。细菌的信号系统是菌体之间信息交流的主要渠道,在调控细菌耐药性方面发挥重要的作用。本文梳理了细菌双组分系统、群体感应系统、第二信使、吲哚等细菌信号系统(分子)与细菌耐药性的关系,总结了各信号系统调控细菌耐药性的机制和途径,包括调控生物膜的形成、调节药物外排泵的活性、激活抗生素灭活酶、提高耐药基因表达水平、促进耐药基因转移、修饰细胞壁结构等,涉及到细菌耐药的多个环节。各信号系统不仅可以独立调控耐药,还可以互相作用,形成调控网络,从多个层面调节细菌耐药性。因此,靶向细菌信号系统,阻断菌体之间的信号联络,有望成为遏制细菌耐药性日益严重的新策略。  相似文献   

3.
耐药菌的日益增多给临床治疗带来巨大的困难,揭示耐药机制成为遏制耐药菌的基本环节.细菌的信号系统是菌体之间信息交流的主要渠道,在调控细菌耐药性方面发挥重要的作用.本文梳理了细菌双组分系统、群体感应系统、第二信使、吲哚等细菌信号系统(分子)与细菌耐药性的关系,总结了各信号系统调控细菌耐药性的机制和途径,包括调控生物膜的形成...  相似文献   

4.
【目的】根际铜绿假单胞菌M18能产生藤黄绿菌素(Plt)和吩嗪-1-羧酸(PCA)两种主要的抗生素。其PqsR/PQS群体感应系统由应答调控蛋白PqsR与信号分子PQS组成。前期研究已经表明pqsR负调控Plt生物合成及基因簇表达。本论文旨在研究PQS分子对Plt合成及基因表达的调控作用。【方法】从M18基因组中扩增PQS合成基因pqsA,通过同源重组技术构建假单胞菌M18的pqsA突变菌株M18pqsA。利用lacZ报告基因分析、信号分子添加实验等,研究PQS对Plt合成及基因表达的调控作用。【结果】在KMB培养基中,分别比较野生型菌株M18和突变菌株M18pqsA的Plt产量,突变菌株的Plt产量存在较小幅度的升高,约为野生型菌株的1.53倍。添加PQS对plt表达存在一定程度但不是很显著的负调控作用。【结论】PQS分子对Plt生物合成及基因表达存在部分负调控作用。  相似文献   

5.
群体感应信号分子AI-2研究进展   总被引:9,自引:0,他引:9  
群体感应(QS)是细菌根据种群密度的变化调控基因表达,协调群体行为的机制。除具有种特异性的信号分子AI-1外,近年来发现一类新的信号分子AI-2在调控细菌基因表达中起重要作用。AI-2的结构和生物合成途径已被确定,其产生依赖于一种称为LuxS的蛋白。目前认为AI-2在细菌种间交流中起通用信号分子(universalsignal)的作用。了解细菌的QS调控过程以及种间细胞交流的新机制,有助于对细菌病害进行防治。  相似文献   

6.
细菌密度阈值感应现象的研究   总被引:1,自引:1,他引:1  
细菌通过复杂的信号传递系统进行着信息交流.细菌的密度阈值感应现象(quorum sensing,QS)是这一信号系统的重要组成部分.细菌通过释放,发现,接受信号分子而实现这一途径.这些信号分子被称为自体诱导分子(autoinducers,AI).通过自体诱导分子细菌可以分辨细胞密度的大小,并通过控制基因的表达而调节细菌的数量.这一过程被称为细菌的密度阈值感应现象.通过这一机制,细菌可以调控整个细菌菌落的基因表达.细菌的密度阈值感应现象使真核生物与原核生物之间的界限变得模糊,细菌可以像多细胞生物一样拥有许多作为个体细菌不可能拥有的特性.细菌的许多行为都受到密度阈值感应机制的调控,如共生现象,毒力因子的表达,耐药性的产生及生物膜的形成等等.研究表明正是通过这种密度阈值感应现象,无论是高度特异的密度阈值感应现象还是普遍存在的密度阈值感应现象,实现了细菌与细菌之间的交流.原核生物与真核生物都不可避免地受到密度阈值感应现象的影响.竞争细菌及易感的真核生物宿主可以通过分泌破坏自体诱导分子或产生自体诱导分子抗体来破坏细菌的密度阈值感应系统而对抗细菌的入侵.  相似文献   

7.
依靠信号分子的交流方式广泛存在于原核生物和真核生物之间,在此交流过程中,相互联络的生物之间产生并释放小分子化合物,从而建立原核生物和真核生物交流的通道,影响彼此基因的表达,这个过程即为跨界信号交流.跨界信号交流广泛发生在病原菌或益生菌与其宿主之间,其产生的生理效应主要取决于特异信号在生物个体中所激发的信号通路.揭示跨界信号调控的信号分子或语言,并阐明其作用机理具有很大的挑战性.已有研究表明,细菌和植物能产生多种多样的信号分子,解析这些信号分子并探讨其作用机理逐渐成为该领域研究热点,其研究成果将有助于发掘新的植物抗病策略,例如,通过干扰跨界信号调控途径而不是直接杀死病原细菌达到抗病的效果;而益生菌中的信号分子的作用机理的研究,也利于农业上的应用.这篇综述总结了植物与细菌之间跨界信号调控的最新研究进展,以及植物相关细菌群体感应系统的LuxR类的转录调控因子在跨界信号调控过程中的作用机制.  相似文献   

8.
曹雪峰  彭练慈  方仁东 《微生物学报》2023,63(12):4482-4501
溶血磷脂(lysophospholipids, LPLs)是细胞膜中的一类脂质代谢中间产物,主要由磷脂分子被水解后生成。LPL的生物学功能与其前体磷脂有明显的区别。在真核细胞中,LPL是一种参与多种胞内生物信号调控的重要活性分子,但在细菌中,LPL的生物学功能还未被充分揭示。LPL通常是细菌细胞膜中的次要组分,在环境压力条件下其含量可显著升高。除了参与细胞膜磷脂代谢,LPL被认为在细菌环境适应性及致病性中发挥重要作用。其在细胞膜中的累积可以显著提高细菌在环境压力下的存活及增殖效率,同时还是细菌感染过程中重要的信号分子。近期有研究表明,LPL可能是细菌新发现的潜在毒力因子。本文因此将结合最新研究数据,对不同种类LPL的从头合成通路以及LPL在细菌抵御环境压力和细菌-宿主互作等方面所发挥的生物学功能进行综述,为对细菌致病机制和防治细菌感染的相关研究提供新的思路和参考借鉴。  相似文献   

9.
群体感应(quorum sensing,QS)是一种依赖菌群密度的细菌交流系统。在探究细菌群体感应系统的调控机制中,对QS信号分子的鉴别和检测是不可或缺的环节,其对生命科学、药学等领域涉及细菌等微生物的相互作用、高效检测和作用机制解析等具有重要的参考意义。本文在总结不同类型细菌QS信号分子来源和结构的基础上,对QS信号分子的光电检测方法和技术进行了综述,重点对光电传感检测的敏感介质、传感界面、传感机制及测试效果进行探讨,同时关注了将微流控芯片分析技术应用于细菌QS信号分子原位监测的相关研究进展。  相似文献   

10.
细菌的信息交流   总被引:1,自引:0,他引:1  
细菌与细菌之间的信息交流是通过相互交换一种自动诱导物(autoinducer)的信号分子来实现的。这种信息交换的过程被称为群体感应(quorumsystem)。细菌根据这种特定信号分子浓度的变化来监测环境中其它细菌数量的变化。细菌的群体感应系统分为种内和种间信息交流两大类。细菌间的信息交流涉及到细菌的多种生理功能,如细菌的致病能力等。因此研究细菌间的信息交流有可能找到一条新的防治细菌感染途径。  相似文献   

11.
12.
Pseudomonas aeruginosa produces the cell-to-cell signal molecule 2-heptyl-3-hydroxy-4-quinolone (The Pseudomonas quinolone signal; PQS), which is integrated within a complicated quorum sensing signaling system. PQS belongs to the family of 2-alkyl-4-quinolones (AQs), which have been previously described for their antimicrobial activities. PQS is synthesized via the pqsABCDE operon which is responsible for generating multiple AQs including 2-heptyl-4-quinolone (HHQ), the immediate PQS precursor. In addition, PQS signaling plays an important role in P. aeruginosa pathogenesis because it regulates the production of diverse virulence factors including elastase, pyocyanin and LecA lectin in addition to affecting biofilm formation. Here, we summarize the most recent findings on the biosynthesis and regulation of PQS and other AQs including the discovery of AQs in other bacterial species.  相似文献   

13.
14.
A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.  相似文献   

15.
16.
The Pseudomonas quinolone signal (PQS), and its precursor 2-heptyl-4-quinolone (HHQ), play a key role in coordinating virulence in the important cystic fibrosis pathogen Pseudomonas aeruginosa. The discovery of HHQ analogues in Burkholderia and other microorganisms led us to investigate the possibility that these compounds can influence interspecies behaviour. We found that surface-associated phenotypes were repressed in Gram-positive and Gram-negative bacteria as well as in pathogenic yeast in response to PQS and HHQ. Motility was repressed in a broad range of bacteria, while biofilm formation in Bacillus subtilis and Candida albicans was repressed in the presence of HHQ, though initial adhesion was unaffected. Furthermore, HHQ exhibited potent bacteriostatic activity against several Gram-negative bacteria, including pathogenic Vibrio vulnificus. Structure-function analysis using synthetic analogues provided an insight into the molecular properties that underpin the ability of these compounds to influence microbial behaviour, revealing the alkyl chain to be fundamental. Defining the influence of these molecules on microbial-eukaryotic-host interactions will facilitate future therapeutic strategies which seek to combat microorganisms that are recalcitrant to conventional antimicrobial agents.  相似文献   

17.
群体感应(quorum sensing,QS)是细菌个体与个体之间的一种交流机制,广泛存在于细菌中。铜绿假单胞菌是人类的一种条件致病菌,它具有至少3种QS系统,即las、rhl和pqs系统,且各系统之间存在着级联调控关系,它们共同作用调控着该菌众多毒力基因的表达和毒力因子的产生。近年来,通过抑制铜绿假单胞菌的QS系统以控制其毒力和致病力,成为一种新型的铜绿假单胞菌感染防控策略。植物精油是一种天然的群体感应抑制剂(quorum sensing inhibitors, QSI),多种精油活性化合物都能抑制铜绿假单胞菌的QS系统,而且尚未发现细菌对其产生耐药性。基于此,梳理了铜绿假单胞菌QS系统的组成及其级联调控关系,简要介绍了植物精油的QS抑制机制和抑制活性,并重点综述了萜烯类化合物、芳香族化合物、脂肪族化合物、含硫含氮化合物4类精油化合物对铜绿假单胞菌QS系统抑制作用的研究进展,以期为从天然化合物中发现和筛选安全、高效的细菌QSI的相关研究提供参考,并为致病菌的防控奠定理论基础。  相似文献   

18.
19.
群体感应系统是一种细胞密度依赖的基因表达系统,其广泛存在于细菌性病原体中,是细菌细胞通讯方式的一种。群体感应系统可利用细菌释放的信号分子不断监控周围细菌的密度。当细菌密度达到阈值时,群体感应系统网络将启动,参与调控生物被膜、细菌毒力等特定基因的表达,从而使临床抗感染治疗失败。而通过抑制群体感应系统,可一定程度上治疗铜绿假单胞菌引起的感染。本文通过查阅近年国内外相关文献,对铜绿假单胞菌群体感应系统研究进展进行总结,为临床铜绿假单胞菌治疗提供新的方向,即群体感应系统抑制剂有可能成为治疗铜绿假单胞菌感染的新策略。  相似文献   

20.
The Gram-negative pathogen Pseudomonas aeruginosa produces an intercellular alkyl quinolone signaling molecule, the Pseudomonas quinolone signal. The pqs quorum sensing communication system that is characteristic for P. aeruginosa regulates the production of virulence factors. Therefore, we consider the pqs system a novel target to limit P. aeruginosa pathogenicity. Here, we present small molecules targeting a key player of the pqs system, PqsR. A rational design strategy in combination with surface plasmon resonance biosensor analysis led to the identification of PqsR binders. Determination of thermodynamic binding signatures and functional characterization in E. coli guided the hit optimization, resulting in the potent hydroxamic acid derived PqsR antagonist 11 (IC(50) = 12.5 μM). Remarkably it displayed a comparable potency in P. aeruginosa (IC(50) = 23.6 μM) and reduced the production of the virulence factor pyocyanin. Beyond this, site-directed mutagenesis together with thermodynamic analysis provided insights into the energetic characteristics of protein-ligand interactions. Thus the identified PqsR antagonists are promising scaffolds for further drug design efforts against this important pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号