首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 906 毫秒
1.
目的:通过二烯丙基二硫诱导白血病K562细胞发生自噬性死亡,探讨其作用机制。方法:40 mg/LDADS作用K562细胞12小时后,透射电镜观察K562细胞超微结构,MDC染色荧光显微镜观察自噬泡及流式细胞仪定量检测自噬率,RT-PCR检测Beclin1mRNA的表达水平。结果:DADS作用后的K562细胞后,透射电镜可观察到胞质内出现大量自噬体;MDC染色荧光显微镜观察显示,K562细胞胞浆中的自噬泡明显增多,而空白组与溶媒组胞浆中的自噬泡很少;流式细胞术定量测定空白对照组、溶媒对照组、DADS药物组自噬率分别为(7.27±5.60)%、(7.10±5.13)%、(27.39±6.51)%(P〈0.05);空白对照组为0.658±0.007,溶媒对照组为0.671±0.012,两者的Beclin1mRNA的表达强度无明显差异(P〉0.05),DADS药物组为0.911±0.008,高于对照组(P〈0.05)。结论:二烯丙基二硫可诱导白血病k562细胞发生自噬性死亡,其机制可能与Beclin1的上调有关。  相似文献   

2.
目的:探讨二烯丙基二硫(DADS)对白血病K562细胞增殖的影响,以及Bcl-2表达的调节作用.方法:用DADS预处理白血病K562细胞构建细胞模型,MTT法分别检测不同DADS浓度(5 gmL-1、10 g mL-1、20 g mL-1、40 g mL-1)和不同处理时间(6h、12h、24h、48h)细胞增殖情况,IC50浓度处理白血病K562细胞之后,Western blot和RT-PCR检测Bcl-2蛋白和mRNA表达水平.结果:MTT结果显示DADS能够抑制白血病K562细胞的增殖,且呈剂量和时间依赖性;IC50浓度的DADS处理K562细胞24小时后,Bcl-2蛋白和mRNA的表达量显著减少.结论:DADS可显著抑制K562细胞增殖,而这一作用可能与Bcl-2表达下调有关.  相似文献   

3.
目的:研究二烯丙基二硫(diallyl disulfide DADS)作用于人白血病K562细胞后凋亡相关基因的差异表达,为进一步探讨DADS诱导K562细胞凋亡的分子机制提供基础.方法:采用瑞士-吉姆萨和Hoechst33342染色观察细胞形态学变化.运用基因芯片技术检测40 mg/LDADS作用于K562细胞24h后凋亡相关基因的差异表达,选择其中上调基因GADD45A、下调基因HO-1运用RT-PCR技术进行验证.结果:40mg/L的DADS作用于K562细胞后出现凋亡所具有的典型形态学变化.40 mg/L DADS作用K562细胞24 h后有14个凋亡相关差异表达基因.GADD45A、HO-1基因表达情况与基因芯片结果一致.结论:DADS可能通过多个基因和多条信号转导通路共同作用诱导人白血病细胞K562凋亡.  相似文献   

4.
目的:探讨二烯丙基二硫(Diallyl disulfide)诱导白血病K562细胞凋亡的作用及其机制。方法:采用吖啶橙/溴化乙啶(AO/EB)染色法观察细胞凋亡形态学变化;DNA琼脂糖凝胶电泳测定DNA梯度带;RT-PCR法检测BAG-1、BAX基因的mRNA表达变化。结果:DADS可诱导K562细胞凋亡。其对K562细胞的凋亡效用与药物浓度、有明显依赖关系;DNA琼脂糖凝胶电泳示:40mg/LDADS作用K562细胞48小时后能够产生明显的梯形电泳图谱(DNA ladder):DADS作用48h后,BAX mRNA表达水平较对照组上调;BAG-1 mRNA较对照组下调(差异具有统计学意义,P<0.05)。结论:DADS能够诱导K562细胞凋亡,其凋亡机制可能与上调BAX,下调BAG-1有关。  相似文献   

5.
目的:探讨二烯丙基二硫(DADS)对体外培养的人白血病细胞系K562细胞生长阻抑和凋亡作用及机制。方法:采用MTT分析法检测细胞活性、流式细胞术分析细胞周期及凋亡率、免疫组化检测p21WAF1基因表达。结果:1).DADS在10mg/L~80 mg/L范围内,对K562细胞的抑制作用呈剂量-时间依赖效应;2).不同浓度DADS作用于K562细胞24h后,细胞周期发生了变化:DADS可以将K562细胞阻滞于G2/M期;3).DADS浓度在10mg/L~80mg/L时作用K562细胞24h后,凋亡率逐渐升高,有显著的统计学意义(P<0.05或P<0.01);4).用浓度分别为0mg/L,20mg/L,40mg/L,80mg/L处理K562细胞24h后,p21WAF1蛋白表达上调,有统计学意义(P<0.05或P<0.01),溶媒组和阴性对照组无差别(P>0.05)。结论:DADS有抑制K562细胞增殖和促进K562细胞凋亡的作用。其作用的可能机制与上调细胞周期蛋白依赖性激酶抑制剂p21WAF1表达,从而诱使k562细胞阻滞于G2/M期有关。  相似文献   

6.
目的:沉默UVRAG基因在DADS诱导K562细胞中观察caspase3的表达。方法:以K562细胞为细胞模型,将构建成功并筛选出最有效干扰抑制UVRAG基因的si RNA序列片段采用lipofectamine TM2000脂质体转染法转染白血病K562细胞,组别为:空白对照组,转染试剂组、阴性对照组,阳性对照组,转染24小时后,利用QT-PCR检测UVRAG m RNA的表达水平以此观察干扰效果,再以40 mg/LDADS处理转染试剂组12小时,采用蛋白印迹(Western Blotting)技术检测凋亡相关基因caspase3的表达。结果:QT-PCR显示:与空白组相比,UVRAG m RNA表达明显减少,表明沉默UVRAG基因成功;Western Blotting显示:DADS处理的干扰成功的K562细胞12小时后,检测到caspase3的蛋白表达水平下降。结论:沉默UVRAG基因能使白血病K562细胞中凋亡相关基因caspase3的蛋白表达水平下降,提示抑制UVRAG表达的同时也可能抑制DADS诱导K562细胞的凋亡。  相似文献   

7.
目的:研究survivin在二烯丙基二硫(diallyl disulfide,DADS)诱导HepG2细胞凋亡中的作用。方法:MTT法检测细胞的生长活性;流式细胞仪检测细胞周期;RT-PCR法检测survivin mRNA水平;Western blot法检测survivin蛋白水平。结果:用药组HepG2细胞活性与正常组相比,随着药物浓度的增加(25,50,100,200μmol/l),分别下降了9.3%、10.4%、21.6%、31.2%,HepG2细胞凋亡率分别增加0.83%、1.97%、6.0%、9.9%,低浓度(25,50μmol/l)的DADS可以诱导survivin mRNA和蛋白表达升高,而高浓度的(100,200μmol/l)DADS可以降低survivin mRNA和蛋白表达。结论:DADS诱导HepG2细胞survivin表达增加,抵抗DADS诱导HepG2细胞的凋亡作用。  相似文献   

8.
目的:探讨过氧化氢(H2O2)诱导神经胶质瘤U251细胞损伤中自噬和凋亡发生的时间顺序。方法:实验分为4组:正常对照组、1mmol/L H2O2作用(6h、12h、24h)组。应用MTF法检测H202对神经胶质瘤U251细胞生存率的影响;MDC染色检测自噬空泡的变化;流式细胞仪检测细胞凋亡率变化。Western blot检测Beclin1和胞浆cyt c蛋白的表达。结果:与对照组相比,1mmol/L H2O2作用下,U251细胞存活率明显降低,并呈时间依赖性。与对照组相比,1mmol/L H2O2作用后,6h时U251细胞自噬空泡明显增加,自噬相关蛋白Beclin1表达明显增加,12h、24h细胞自噬水平逐渐增强;而6h时未见细胞凋亡率明显变化及cyt c由线粒体向胞浆的释放,12h、24h时细胞凋亡率明显增加,胞浆中cyt c蛋白表达明显增强(P〈0.05)。结论:氧化损伤能够诱导神经胶质瘤U251细胞发生自噬和凋亡,并且自噬发生于凋亡之前。  相似文献   

9.
目的观察高表达RORα对二烯丙基二硫(DADS)抑制人胃癌MGC803细胞增殖、迁移与侵袭的影响。方法集落形成实验与流式细胞术检测细胞增殖与细胞周期;细胞划痕和Transwell实验分别检测细胞迁移与侵袭。RT-PCR与Western blot分别检测RORα、MMP-9和TIMP3 mRNA与蛋白表达水平。结果RT-PCR与Western blot检测显示,RORα高表达与DADS处理较对照组与空载体组RORαmRNA与蛋白表达明显上调,DADS+RORα高表达组上调更为显著(P<0.05)。与对照组和空载体组比较,RORα高表达与DADS处理组MMP-9表达下调,TIMP3表达上调,DADS+RORα高表达组改变最为显著。集落形成实验显示,RORα高表达与DADS处理组较对照组与空载体组的集落形成率明显降低。流式细胞术显示,与对照组和空载体组比较,RORα高表达与DADS处理组G2/M期细胞比率明显升高。细胞划痕和Transwell实验显示,RORα高表达与DADS处理组细胞迁移与侵袭能力明显降低。结论RORα高表达可通过上调TIMP3与下调MMP-9促进DADS阻滞MGC803细胞G2/M期和抑制增殖与迁移侵袭。  相似文献   

10.
目的:研究二烯丙基二硫(diallyldisulfide,DADS)对人小细胞肺癌NCI.H446细胞增殖的抑制作用,并探讨其作用机制。方法:体外培养NCI-H446细胞,采用MTT、细胞计数实验方法检测DADS抑制NCI—H446细胞增殖;通过HE染色和AO—EB荧光染色方法,观察DADS处理后NCI—H446细胞的形态学改变。结果:MTT结果显示:DADS作用于NCI—H446细胞48h后,代谢MTT的能力明显降低,显示出较强的细胞毒性反应,IC50值介于20-40μg/ml之间。细胞计数结果表明:DADS作用于NCI—H446细胞后,随DADS浓度增加NCI—H446细胞倍增时间延长。HE染色显示:NCI—H446细胞经DADS处理24h后,与对照组相比,细胞体积变小,胞浆丰富,细胞核变小,染色变淡。AO-EB荧光染色显示:NCI-H446细胞经DADS处理24h后,与对照组相比,细胞皱缩、呈圆形,胞质黄色或橘红色,细胞核或细胞质内可见致密浓染的黄绿色或橘红色荧光,并可见橘红色碎片且随DADS浓度增加,随DADS浓度增加细胞密度逐渐减少。结论:DADS能抑制体外培养的NCI—H446细胞增殖,作用效果与药物浓度及作用时间相关。  相似文献   

11.
Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.  相似文献   

12.
《Autophagy》2013,9(2):277-279
The term "autophagic cell death" was coined to describe a form of cell death associated with the massive formation of autophagic vacuoles without signs of apoptosis. However, questions about the actual role of autophagy and its molecular basis in cell death remain to be elucidated. We recently reported that adult hippocampal neural stem (HCN) cells undergo autophagic cell death following insulin withdrawal. Insulin-deprived HCN cells exhibit morphological and biochemical markers of autophagy, including accumulation of Beclin 1 and the type II form of microtubule-associated protein 1 light chain 3 (LC3) without evidence of apoptosis. Suppression of autophagy by knockdown of Atg7 reduces cell death, whereas promotion of autophagy with rapamycin augments cell death in insulin-deficient HCN cells. These data reveal a causative role of autophagy in insulin withdrawal-induced HCN cell death. HCN cells have intact apoptotic capability despite the lack of apoptosis following insulin withdrawal. Our study demonstrates that autophagy is the default cell death mechanism in insulin-deficient HCN cells, and provides a genuine model of autophagic cell death in apoptosis-intact cells. Novel insight into molecular mechanisms of this underappreciated form of programmed cell death should facilitate the development of therapeutic methods to cope with human diseases caused by dysregulated cell death.  相似文献   

13.
The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.  相似文献   

14.
The previous studies by this author group has shown that paclitaxel, a mitotic inhibitor used in breast cancer chemotherapy, inhibits cell growth via induction of Raf-1-dependent apoptosis. In this article, the role of autophagy in paclitaxel anticancer action was investigated using v-Ha-ras-transformed NIH 3T3 cells. Paclitaxel induced a notable increase in the number of fluorescent particles labeled with monodansylcadaverine (MDC), a specific marker for autophagic vacuoles. MDC-labeled vacuoles clearly exhibited the fluorescent-tagged LC3 in cells transiently overexpressing GFP-LC3 (a protein that associates with autophagosome membranes). However, autophagy inhibition with 3-methyladenine (3-MA) failed to rescue v-Ha-ras-transformed NIH 3T3 cells from paclitaxel-induced cell death. More interestingly, the apoptosis inhibition by overexpression of the X-linked inhibitor of apoptosis (XIAP) did not fully block the cell death by paclitaxel, implying that apoptosis inhibition might accelerate the autophagic components of the paclitaxel response. Conversely, Raf-1 shRNA expression protected against paclitaxel-induced cell death through the simultaneous inhibition of both autophagy and apoptosis. These results suggest that both autophagy and apoptosis act as cooperative partners to induce cell death in v-Ha-ras-transformed NIH 3T3 cells treated with paclitaxel.  相似文献   

15.
《Autophagy》2013,9(2):166-173
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

16.
Liu WT  Lin CH  Hsiao M  Gean PW 《Autophagy》2011,7(2):166-175
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.  相似文献   

17.
Autophagy is a process of bulk protein degradation and organelle turnover, and is a current therapeutic target in several diseases. The present study aimed to clarify the significance of myocardial autophagy of patients with dilated cardiomyopathy (DCM). Left ventricular endomyocardial biopsy was performed in 250 consecutive patients with DCM (54.9±13.9 years; male, 79%), initially presenting with decompensated heart failure (HF). The association of these findings with HF mortality or recurrence was examined. Myofilament changes, which are apparent in the degenerated cardiomyocytes of DCM, were recognized in 164 patients (66%), and autophagic vacuoles in cardiomyocytes were identified in or near the area of myofilament changes in 86 patients (34%). Morphometrically, fibrosis (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.93 to 0.99) and mitochondrial abnormality (OR, 2.24; 95% CI, 1.23 to 4.08) were independently related with autophagic vacuoles. During the follow-up period of 4.9±3.9 y, 24 patients (10%) died, including 10 (4%) who died of HF, and 67 (27%) were readmitted for HF recurrence. Multivariate analysis identified a family history of DCM (hazard ratio [HR], 2.117; 95% CI, 1.199 to 3.738), hemoglobin level (HR, 0.845; 95% CI, 0.749 to 0.953), myofilament changes (HR, 13.525; 95% CI, 5.340 to 34.255), and autophagic vacuoles (HR, 0.214; 95% CI, 0.114 to 0.400) as independent predictors of death or readmission due to HF recurrence. In conclusion, autophagic vacuoles in cardiomyocytes are associated with a better HF prognosis in patients with DCM, suggesting autophagy may play a role in the prevention of myocardial degeneration.  相似文献   

18.
《Autophagy》2013,9(3):366-377
We have previously shown that in neonatal rats subjected to hypoxia-ischemia (HI) rapamycin administration increases autophagy, decreases apoptosis and significantly reduces brain damage. After HI, when autophagy is blocked neuronal cells rapidly progress toward necrotic cell death. The present study was undertaken to assess the potential role of activation of autophagic and phosphatidylinositol 3-kinase (PI3K)/Akt kinase pathways in the neuroprotective effect of rapamycin. Rapamycin administration caused a significant reduction of 70 kDa S6 kinase (p70S6K) phosphorylation and a significant increase of the autophagic proteins beclin 1 and microtubule-associated protein 1 light chain 3 (LC3), as of monodansylcadaverine (MDC) labelling in the lesioned side. The phosphorylation of Akt and cAMP response element binding protein (CREB) was increased in neuronal cells, and both p-Akt and p-CREB co-localized with beclin 1. Wortmannin (WT) administration significantly reduced Akt and CREB phosphorylation as well as the neuroprotective effect of rapamycin but did not affect the phosphorylation of p70S6K, the expression of beclin 1 and LC3, and MDC labelling. In contrast, 3-methyladenine (3MA) reduced the increased beclin 1 expression, the MDC labelling and the neuroprotective effect of rapamycin without affecting Akt phosphorylation. However, both compounds significantly increased necrotic cell death. Taken together, these data indicate that in neonatal HI autophagy can be part of an integrated pro-survival signalling which includes the PI3K-Akt-mammalian target of rapamycin (mTOR) axis. When the autophagic or the PI3K-Akt-mTOR pathways are interrupted cells undergo necrotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号