首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
细胞色素P450(cytochrome P450,CYP450)在人体药物代谢过程中起着非常重要的作用并参与代谢80%以上的临床药物。由于CYP450在不同种族和不同人群中存在基因多态性,从而造成药物反应的个体差异,一度成为药物基因组学研究的热点。通过查阅国外相关文献,综述了近年来关于CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4五种主要的药物代谢酶的基因多态性和药物代谢的研究进展,为临床指导个体化用药、避免药物不良反应和新药研发提供科学参考依据。  相似文献   

2.
细胞色素P450药物代谢酶基因多态性已被公认是导致临床上个体间药物反应差异的重要原因,然而这一理论无法完全解释个体间某些P450酶亚型的基因型和表型不一致的现象。表观遗传学调控因素为解决上述问题提供了新的思路和方法。本文综述了DNA甲基化,组蛋白修饰,miRNA的调节等表观遗传机制对P450药物代谢酶基因表达影响的研究进展。关于这方面的研究将为揭示个体间P450酶差异性表达的实质提供新的视角,并有望为指导临床个体化用药提供更充分的依据。  相似文献   

3.
细胞色素P4501B1基因多态性与乳腺癌易感性研究进展   总被引:1,自引:0,他引:1  
细胞色素P450(cytochrome,CYP)1B1是P450超基因家族酶系的一个重要成员,广泛分布于肝外组织,其代谢受到外源性致癌物、雌激素等多种因素的调控。该基因存在遗传多态性,艮前已对CYP1B1基因多态性与乳腺癌易感性进行了多项研究。本文就CYP1B1基因的多态性、调控机制及其与乳腺癌的关系进行了综述。  相似文献   

4.
细胞色素P450酶的结构、功能与应用研究进展   总被引:3,自引:1,他引:2  
细胞色素P450 (cytochrome P450,CYP)酶是广泛存在于微生物、动植物及人体中与膜结合的血红蛋白类酶,具有氧化、环氧化、羟化、去甲基化等多种生物催化活性。CYP酶在药物、类固醇、脂溶性维生素和许多其他类型化学物质的代谢中具有重要作用,其在异源物质的解毒、药物相互作用和内分泌功能等领域的研究是热点问题。本综述对CYP的结构、功能、临床应用与开发前景进行了概述,并对其最新的研究现状和发展前景进行探讨。  相似文献   

5.
生物转化酶类基因多态性与肿瘤易感性   总被引:1,自引:0,他引:1  
肿瘤易感性一直是肿瘤研究的重要课题,而生物转化酶类的细胞色素P450(CYP450)和谷胱甘肽转硫酶(GST)等由于其对环境致癌物的生物转化作用决定了个体对肿瘤的易感程度。通过介绍其中的CYP1A1,CYP2D6,CYP2E1,GSTM1和GSTT1等的基因多态性及其与机体易患肿瘤的关系,揭示了生物转化酶基因多态性在肿瘤易感性中的作用,国内外的研究结果表明,CYP1A1基因多态性与肺癌的发生,CYP2E1基因多态性与食管癌的易感性均密切相关,GSP的基因多态性虽然与多种肿瘤的易感性有关联但研究结果有的互相矛盾,提示机体肿瘤发生机理的复杂性,由于环境致癌物在体内需经一系列的生物转化而产生生物学效应,因而生物转化酶类基因多态性的联合作用在肿瘤的易感中显得尤为重要。  相似文献   

6.
背景:卡马西平(carbamazepine,CMZP)主要由CYP3A酶家族代谢,其代谢酶主要包括CYP3A5。本研究探讨了CYP3A5基因多态性与卡马西平血清浓度(CMZP)之间的关系,对个体化药物治疗的开展具有十分积极的意义。目的:CYP3A5*3的基因型可以影响CYP3A药物的药代动力学。本研究旨在评估CYP3A基因多态性对癫痫患者血清卡马西平稳态浓度及其代谢物水平的影响。方法:研究共纳入278例患者,检测个体卡马西平的血清浓度及CYP3A5基因型,并探讨CYP3A5基因型对卡马西平稳态血药浓度的影响。结果:根据基因型分为成CYP3A5表达组(CYP3A5*1/*1和CYP3A5*1/*3)和非表达组(CYP3A5*3/*3)两组。278例患者中120例为CYP3A5表达组,158例患者为CYP3A5非表达组。CYP3A5非表达组的总卡马西平剂量和剂量标准化后的卡马西平血清浓度均高于CYP3A5表达组(P=0.608和P=0.000)。CYP3A5表达组中卡马西平环氧化物浓度更高(P=0.000),但这两组间的血清药物浓度无显著差异(P=0.090)。结论:CYP3A5*3基因多态性与卡马西平的血清浓度之间有密切的关系。CYP3A5基因影响了卡马西平血药浓度水平和代谢过程,其可能是导致卡马西平在癫痫患者中个体变异的一个重要因素。  相似文献   

7.
家蚕细胞色素P450的基因组学分析   总被引:10,自引:0,他引:10  
细胞色素P450参与许多基础代谢过程, 确保有机体避免外源复合物对它们的伤害. 将预测的家蚕基因同已知的P450基因进行蛋白质序列比对, 在家蚕基因组中发现86个可能的细胞色素P450基因, 初步将它们归于32个P450亚家族. 通过比较基因组学分析, 发现细胞色素P450基因在果蝇与家蚕中的分布规律具有总体上的相似性, 但在某些P450基因家族中的分布也有差异. 特别是在CYP4A, CYP4C, CYP4D, CYP6A, CYP6AE, CYP6B和CYP9A等7个亚家族中P450s差异分布更明显. 进一步将这些P450基因的DNA序列与家蚕ESTs进行核酸序列比对, 其中49个可能P450基因发现有ESTs证据, 证明了这些基因在转录水平的真实性.  相似文献   

8.
黄聪  黄毅  王凯  石欣 《生物磁学》2011,(8):1591-1593
细胞色素P450(CYP450)是体内重要的Ⅰ相代谢酶,与许多前致癌物和致癌物的活化有关。CYP450是目前肿瘤研究中新的热点之一。深入研究CYP450在肿瘤发生、发展过程中的作用机制及基因多态性与肿瘤易感性的关系,对肿瘤防治有积极作用。现就近年来CYP450在肿瘤领域的研究进展进行综述。  相似文献   

9.
细胞色素P450(CYP450)是体内重要的Ⅰ相代谢酶,与许多前致癌物和致癌物的活化有关。CYP450是目前肿瘤研究中新的热点之一。深入研究CYP450在肿瘤发生、发展过程中的作用机制及基因多态性与肿瘤易感性的关系,对肿瘤防治有积极作用。现就近年来CYP450在肿瘤领域的研究进展进行综述。  相似文献   

10.
细胞色素P450 1A1基因多态性与我国某些肿瘤遗传易感性   总被引:1,自引:0,他引:1  
近年来有关细胞色素P450基因多态性与肿瘤遗传易感性的研究正日益吸引越来越多的关注,本文对我国近年来有关细胞色素P450 1A1(CYP1Al)基因多态性与几种肿瘤遗传易感性的研究进行探讨,推测我国几种高发病率肿瘤的发生与我国CYP1A1基因多态分布状况有关,以此为进一步研究CYP1A1与肿瘤的关系作参考。  相似文献   

11.
Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.  相似文献   

12.
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.  相似文献   

13.
Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined.  相似文献   

14.
15.
The debrisoquine/sparteine polymorphism is associated with a clinically important genetic deficiency of oxidative drug metabolism. From 5% to 10% of Caucasians designated as poor metabolizers (PMs) of the debrisoquine/sparteine polymorphism have a severely impaired capacity to metabolize more than 25 therapeutically used drugs. The impaired drug metabolism in PMs is due to the absence of cytochrome P450IID6 protein. The gene controlling the P450IID6 protein, CYP2D6, is located on the long arm of chromosome 22. A pseudogene CYP2D8P and a related gene CYP2D7 are located upstream from CYP2D6. This gene locus is highly polymorphic. After digestion of genomic DNA with XbaI endonuclease, restriction fragments of 11.5 kb and 44 kb represent mutant alleles of the cytochrome CYP2D6 gene locus associated with the PM phenotype. In order to elucidate the molecular mechanism of the mutant allele reflected by the XbaI 11.5-kb fragment, a genomic library was constructed from leukocyte DNA of one individual homozygous for this fragment and screened with the human IID6 cDNA. The CYP2D genes were isolated and characterized by restriction mapping and partial sequencing. We demonstrate that the mutant 11.5-kb allele results from a deletion involving the entire functional CYP2D6 gene. This result provides an explanation for the total absence of P450IID6 protein in the liver of these PMs.  相似文献   

16.
CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may serve to engage each E2-E3 complex. Collectively, our findings underscore the interplay between protein phosphorylation and ubiquitination in ERAD and, to our knowledge, provide the very first example of gp78 substrate recognition via protein phosphorylation.  相似文献   

17.
CYP3A4 is a dominant human liver cytochrome P450 enzyme engaged in the metabolism and disposition of >50% of clinically relevant drugs and held responsible for many adverse drug-drug interactions. CYP3A4 and its mammalian liver CYP3A orthologs are endoplasmic reticulum (ER)-anchored monotopic proteins that undergo ubiquitin (Ub)-dependent proteasomal degradation (UPD) in an ER-associated degradation (ERAD) process. These integral ER proteins are ubiquitinated in vivo, and in vitro studies have identified the ER-integral gp78 and the cytosolic co-chaperone, CHIP (C terminus of Hsp70-interacting protein), as the relevant E3 Ub-ligases, along with their cognate E2 Ub-conjugating enzymes UBC7 and UbcH5a, respectively. Using lentiviral shRNA templates targeted against each of these Ub-ligases, we now document that both E3s are indeed physiologically involved in CYP3A ERAD/UPD in cultured rat hepatocytes. Accordingly, specific RNAi resulted in ≈80% knockdown of each hepatic Ub-ligase, with a corresponding ≈2.5-fold CYP3A stabilization. Surprisingly, however, such stabilization resulted in increased levels of functionally active CYP3A, thereby challenging the previous notion that E3 recognition and subsequent ERAD of CYP3A proteins required ab initio their structural and/or functional inactivation. Furthermore, coexpression in HepG2 cells of both CYP3A4 and gp78, but not its functionally inactive RING-finger mutant, resulted in enhanced CYP3A4 loss greater than that in corresponding cells expressing only CYP3A4. Stabilization of a functionally active CYP3A after RNAi knockdown of either of the E3s, coupled with the increased CYP3A4 loss on gp78 or CHIP coexpression, suggests that ERAD-associated E3 Ub-ligases can influence clinically relevant drug metabolism by effectively regulating the physiological CYP3A content and consequently its function.  相似文献   

18.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

19.
The debrisoquine-4-hydroxylase polymorphism is a genetic variation in oxidative drug metabolism characterized by two phenotypes, the extensive metabolizer (EM) and poor metabolizer (PM). Of the Caucasian populations of Europe and North America, 5%-10% are of the PM phenotype and are unable to metabolize debrisoquine and numerous other drugs. The defect is caused by several mutant alleles of the CYP2D6 gene, two of which are detected in about 70% of PMs. We have constructed a genomic library from lymphocyte DNA of an EM positively identified by pedigree analysis to be homozygous for the normal CYP2D6 allele. The normal CYP2D6 gene was isolated; was completely sequenced, including 1,531 and 3,522 bp of 5' and 3' flanking DNA, respectively; and was found to contain nine exons within 4,378 bp. Two other genes, designated CYP2D7 and CYP2D8P, were also cloned and sequenced. CYP2D8P contains several gene-disrupting insertions, deletions, and termination codons within its exons, indicating that this is a pseudogene. CYP2D7, which is just downstream of CYP2D8P, is apparently normal, except for the presence, in the first exon, of an insertion that disrupts the reading frame. A hypothesis is presented that the presence of a pseudogene within the CYP2D subfamily transfers detrimental mutations via gene conversions into the CYP2D6 gene, thus accounting for the high frequency of mutations observed in the CYP2D6 gene in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号