首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The strength of interactions with APC instructs naive T cells to undergo programmed expansion and differentiation, which is largely determined by the peptide affinity and dose as well as the duration of TCR ligation. Although, most ligands mediating these interactions are terminally sialylated, the impact of the T cell sialylation status on Ag-dependent response remains poorly understood. In this study, by monitoring TCR transgenic CD8+ T cells, OT-I, we show that biochemical desialylation of naive OT-I T cells increases their sensitivity for agonist as well as partial agonist peptides. Desialylation enhances early activation and shortens the duration of TCR stimulation required for proliferation and differentiation, without increasing apoptosis. Moreover, desialylation of naive OT-I T cells augments their response to tumor-presented Ag. These results provide direct evidence for a regulatory role for sialylation in Ag-dependent CD8+ T cell responses and offer a new approach to sensitize or dampen Ag-specific CD8+ T cell responses.  相似文献   

2.
IFN-gamma is an essential component of the early Listeria monocytogenes-specific immune response, and is also an important regulator of Ag processing and presentation. Ag presentation is required for the induction and also the effector function of antimicrobial T cells. To evaluate the effect of IFN-gamma on bacterial Ag presentation in vivo, macrophages and dendritic cells were separated from L. monocytogenes-infected tissues and analyzed with peptide-specific CD4 and CD8 T cell lines in a sensitive ELISPOT-based ex vivo Ag presentation assay. The comparison of professional APCs isolated from infected IFN-gamma-deficient and wild-type mice revealed different peptide presentation patterns of L. monocytogenes-derived CD8 T cell epitopes, while the presentation pattern of CD4 T cell epitopes remained unchanged. The further in vitro analysis of the generation of CD8 T cell epitopes revealed a peptide-specific effect of IFN-gamma on MHC class I-restricted Ag presentation. These results show that despite this modulation of the Ag presentation pattern of CD8 T cell epitopes, IFN-gamma is not generally required for the MHC class I- and MHC class II-restricted presentation of L. monocytogenes-derived antigenic peptides by professional APCs in vivo.  相似文献   

3.
Identification of the signals required for optimal differentiation of naive CD8(+) T cells into effector and memory cells is critical for the design of effective vaccines. In this study we demonstrate that CD27 stimulation by soluble CD70 considerably enhances the magnitude and quality of the CD8(+) T cell response. Stimulation with soluble CD70 in the presence of Ag significantly enhanced the proliferation of CD8(+) T cells and their ability to produce IL-2 and IFN-gamma in vitro. Administration of Ag and soluble CD70 resulted in a massive (>300-fold) expansion of Ag-specific CD8(+) T cells in vivo, which was due to the enhanced proliferation and survival of activated T cells. In mice that received Ag and soluble CD70, CD8(+) T cells developed into effectors with direct ex vivo cytotoxicity. Furthermore, unlike peptide immunization, which resulted in a diminished response after rechallenge, CD27 stimulation during the primary challenge evoked a strong secondary response upon rechallenge with the antigenic peptide. Thus, in addition to increasing the frequency of primed Ag-specific T cells, CD27 signaling during the primary response instills a program of differentiation that allows CD8(+) T cells to overcome a state of unresponsiveness. Taken together these results demonstrate that soluble CD70 has potent in vivo adjuvant effects for CD8(+) T cell responses.  相似文献   

4.
Imatinib mesylate (IM) is effective at inducing complete cytogenetic remission in patients with chronic myelogenous leukemia. Because its influence on CD8 T cell responsiveness in vivo is unknown, we investigated the effects of IM by analyzing the response of OT-1 CD8 T cells to Listeria monocytogenes (LM) that express the cognate epitope OVA(257-264) (LM-OVA). In vitro, IM had no effect on Ag-specific expansion, cell division, cell cycle progression, or IFN-gamma expression in naive or memory OT-1 T cells. However, IM induced apoptosis of naive and memory OT-1 T cells at doses of >5 microM. At 15 microM IM, OT-1 T cells did not survive in in vitro cultures. The primary response of OT-1 T cells in vivo to LM-OVA infection was unaltered. In contrast, continuous IM treatment resulted in a diminished memory OT-1 response. The expression of IL-7Ralpha, a receptor required for memory cell survival, was lower (on OT-1 cells) in animals receiving IM. These results indicate that IM treatment affects the ability of the CD8 memory pool to respond to Ag and has the potential to increase susceptibility to infection.  相似文献   

5.
During infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta). During long-term persistent infection, central-memory cells constitute 20-50% of the virus-specific CD8+ T cell population and maintain the expression of L-selectin, CCR7, and IL-7R molecules. Functional analyses demonstrate that during viral persistence: 1) CD8+ T cells maintain TCR affinity for peptide/MHC complexes, 2) the functional avidity of CD8+ T cells measured as the capacity to produce IFN-gamma is preserved intact, and 3) virus-specific CD8+ T cells have in vivo killing capacity. Next, we demonstrate that at 8 mo post-virus inoculation, long-term CD8+ T cells are capable of mediating a protective recall response against the establishment of gammaHV68 splenic latency. These observations provide evidence that functional CD8+ memory T cells can be generated and maintained during low-load gammaHV68 persistence.  相似文献   

6.
Studies in IFN-gamma-deficient mice suggest that the delivery of IFN-gamma to CD8(+) T cells early in virus infection programs their eventual contraction, thereby reducing the abundance of CD8(+) memory T cells. In this study, we show that such mice fail to completely eliminate virus infection and that, when evaluated without the confounding factor of persisting Ag, both CD4(+) and CD8(+) T cells undergo profound contraction when they are unable to receive IFN-gamma signals. Furthermore, the abundance of CD4(+) and CD8(+) memory cells that express the IFN-gamma receptor is approximately 100-fold higher than cells lacking this molecule. Thus, direct IFN-gamma signaling is not required for T cell contraction during virus infection, and it enhances, rather than suppresses, the development of virus-specific CD4(+) and CD8(+) T cell memory.  相似文献   

7.
After Ag encounter, CD8+ T cells become activated and begin to proliferate. Early during infection, when Ag-specific effector CD8+ T cells are proliferating, producing cytokines, and lysing infected cells in vivo, their mitochondrial potential is increased. The purpose of the experiments presented here was to determine whether mitochondrial function was required for CD8+ T cell function. To block mitochondrial function, transgenic CD8+ T cells were incubated with increasing doses of rotenone, an inhibitor of electron transport complex I. Within minutes of T cell activation, rotenone incubation decreased the production of H(2)O(2), calcium flux, and ERK1/2 phosphorylation. Failure to undergo signal transduction resulted in a decrease in T cell division initiated by peptide-coated cells, CD3/CD28 Abs, and PMA/ionomycin stimulation. Decreased function following rotenone incubation was not restricted to naive cells, as effector and memory CD8+ T cells isolated directly ex vivo from lymphocytic choriomeningitis virus-infected mice displayed decreased production of IFN-gamma and TNF-alpha production after peptide stimulation. Furthermore, incubation with rotenone decreased degranulation of effector and memory cells, a critical step in the cytolysis of infected cells. These data suggest that electron transport complex I is required for CD8+ T cell signal transduction, proliferation, cytokine production, and degranulation.  相似文献   

8.
Chronic Ag exposure during persistent viral infection erodes virus-specific CD8 T cell numbers and effector function, with a concomitant loss of pathogen control. Less clear are the respective contributions of Ag-specific and Ag-nonspecific (bystander) events on the quantity, quality, and maintenance of antiviral CD8 T cells responding to persistent virus infection. In this study, we show that low-dose inoculation with mouse polyomavirus (PyV) elicits a delayed, but numerically equivalent, antiviral CD8 T cell response compared with high-dose inoculation. Low-dose infection generated virus-specific CD8 T cells endowed with multicytokine functionality and a superior per cell capacity to produce IFN-gamma. PyV-specific CD8 T cells primed by low-dose inoculation also expressed higher levels of IL-7Ralpha and bcl-2 and possessed enhanced Ag-independent survival. Importantly, the quantity and quality of the antiviral CD8 T cell response elicited by dendritic cell-mediated immunization were mitigated by infection with a mutant PyV lacking the dominant CD8 T cell viral epitope. These findings suggest that the fitness of the CD8 T cell response to persistent virus infection is programmed in large part by early virus-associated Ag-nonspecific factors, and imply that limiting bystander inflammation at the time of inoculation, independent of Ag load, may optimize adaptive immunity to persistent viral infection.  相似文献   

9.
We identified a murine peptide-specific CD8 T regulatory cell population able to suppress responding CD4 T cells. Immunization with OVA, poly(I:C), and anti-4-1BB generated a population of SIINFEKL-specific CD8 T regulatory cells that profoundly inhibited peptide-responding CD4 T cells from cellular division. The mechanism of suppression required IFN-gamma, but IFN-gamma alone was not sufficient to suppress the responding CD4 T cells. The data show that CD8 T regulatory cells were unable to suppress unless they engaged IFN-gamma. Furthermore, even in the absence of recall with peptide, the CD8 T regulatory cells suppressed CD4 responses as long as IFN-gamma was present. To examine the effector mechanism of suppression, we showed that neutralizing TGF-beta inhibited suppression because inclusion of anti-TGF-beta rescued the proliferative capacity of the responding cells. TGF-beta-based suppression was dependent completely upon the CD8 T regulatory cells being capable of binding IFN-gamma. This was the case, although peptide recall of primed IFN-gamma (-/-) or IFN-gammaR(-/-) CD8 T cells up-regulated pro-TGF-beta protein as measured by surface latency-associated peptide expression but yet were unable to suppress. Finally, we asked whether the CD8 T regulatory cells were exposed to active TGF-beta in vivo and showed that only wild-type CD8 T regulatory cells expressed the TGF-beta-dependent biomarker CD103, suggesting that latency-associated peptide expression is not always congruent with elaboration of active TGF-beta. These data define a novel mechanism whereby IFN-gamma directly stimulates CD8 T regulatory cells to elaborate TGF-beta-based suppression. Ultimately, this mechanism may permit regulation of pathogenic Th1 responses by CD8 T regulatory cells.  相似文献   

10.
Costimulation of CD8 T cell responses by OX40   总被引:4,自引:0,他引:4  
The persistence of functional CD8 T cell responses is dependent on checkpoints established during priming. Although naive CD8 cells can proliferate with a short period of stimulation, CD4 help, inflammation, and/or high peptide affinity are necessary for the survival of CTL and for effective priming. Using OX40-deficient CD8 cells specific for a defined Ag, and agonist and antagonist OX40 reagents, we show that OX40/OX40 ligand interactions can determine the extent of expansion of CD8 T cells during responses to conventional protein Ag and can provide sufficient signals to confer CTL-mediated protection against tumor growth. OX40 signaling primarily functions to maintain CTL survival during the initial rounds of cell division after Ag encounter. Thus, OX40 is one of the costimulatory molecules that can contribute signals to regulate the accumulation of Ag-reactive CD8 cells during immune responses.  相似文献   

11.
Plasmacytoid dendritic cells (pDC) are the body's main source of IFN-alpha, but, unlike classical myeloid DC (myDC), they lack phagocytic activity and are generally perceived as playing only a minor role in Ag processing and presentation. We show that murine pDC, as well as myDC, express Fcgamma receptors (CD16/CD32) and can use these receptors to acquire Ag from immune complexes (IC), resulting in the induction of robust Ag-specific CD4(+) and CD8(+) T cell responses. IC-loaded pDC stimulate CD4(+) T cells to proliferate and secrete a mixture of IL-4 and IFN-gamma, and they induce CD8(+) T cells to secrete IL-10 as well as IFN-gamma. In contrast, IC-loaded myDC induce both CD4(+) and CD8(+) T cells to secrete mainly IFN-gamma. These results indicate that pDC can shape an immune response by acquiring and processing opsonized Ag, leading to a predominantly Th2 response.  相似文献   

12.
Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.  相似文献   

13.
The response of T cells to liver Ags sometimes results in immune tolerance. This has been proposed to result from local, intrahepatic priming, while the expression of the same Ag in liver-draining lymph nodes is believed to result in effective immunity. We tested this model, using an exogenous model Ag expressed only in hepatocytes, due to infection with an adeno-associated virus vector. T cell activation was exclusively intrahepatic, yet in contrast to the predictions of the current model, this resulted in clonal expansion, IFN-gamma synthesis, and cytotoxic effector function. Local activation of naive CD8(+) T cells can therefore cause full CD8(+) T cell activation, and hepatocellular presentation cannot be used to explain the failure of CTL effector function against some liver pathogens such as hepatitis C.  相似文献   

14.
CD8(+) T cell responses to persistent infections caused by intracellular pathogens are dominated by resting T effectors and T effector memory cells, with little evidence suggesting that a T central memory (T(CM)) population is generated. Using a model of Trypanosoma cruzi infection, we demonstrate that in contrast to the T effector/T effector memory phenotype of the majority of T. cruzi-specific CD8(+) T cells, a population of cells displaying hallmark characteristics of T(CM) cells is also present during long-term persistent infection. This population expressed the T(CM) marker CD127 and a subset expressed one or more of three other T(CM) markers: CD62L, CCR7, and CD122. Additionally, the majority of CD127(high) cells were KLRG1(low), indicating that they have not been repetitively activated through TCR stimulation. These CD127(high) cells were better maintained than their CD127(low) counterparts following transfer into naive mice, consistent with their observed surface expression of CD127 and CD122, which confer the ability to self-renew in response to IL-7 and IL-15. CD127(high) cells were capable of IFN-gamma production upon peptide restimulation and expanded in response to challenge infection, indicating that these cells are functionally responsive upon Ag re-encounter. These results are in contrast to what is typically observed during many persistent infections and indicate that a stable population of parasite-specific CD8(+) T cells capable of Ag-independent survival is maintained in mice despite the presence of persistent Ag.  相似文献   

15.
Modification in the function of dendritic cells (DC), such as that achieved by microbial stimuli or T cell help, plays a critical role in determining the quality and size of adaptive responses to Ag. NKT cells bearing an invariant TCR (iNKT cells) restricted by nonpolymorphic CD1d molecules may constitute a readily available source of help for DC. We therefore examined T cell responses to i.v. injection of soluble Ag in the presence or the absence of iNKT cell stimulation with the CD1d-binding glycolipid alpha-galactosylceramide (alpha-GalCer). Considerably enhanced CD4(+) and CD8(+) T cell responses were observed when alpha-GalCer was administered at the same time as or close to OVA injection. This enhancement was dependent on the involvement of iNKT cells and CD1d molecules and required CD40 signaling. Studies in IFN-gammaR(-/-) mice indicated that IFN-gamma was not required for the adjuvant effect of alpha-GalCer. Consistent with this result, enhanced T cell responses were observed using OCH, an analog of alpha-GalCer with a truncated sphingosine chain and a reduced capacity to induce IFN-gamma. Splenic DC from alpha-GalCer-treated animals expressed high levels of costimulatory molecules, suggesting maturation in response to iNKT cell activation. Furthermore, studies with cultured DC indicated that potentiation of T cell responses required presentation of specific peptide and alpha-GalCer by the same DC, implying conditioning of DC by iNKT cells. The iNKT-enhanced T cell responses resisted challenge with OVA-expressing tumors, whereas responses induced in the absence of iNKT stimulation did not. Thus, iNKT cells exert a significant influence on the efficacy of immune responses to soluble Ag by modulating DC function.  相似文献   

16.
Previous studies have demonstrated that, as naive murine CD4(+) cells differentiate into Th1 cells, they lose expression of the second chain of IFN-gammaR (IFN-gammaR2). Hence, the IFN-gamma-producing subset of Th cells is unresponsive to IFN-gamma. Analysis of IFN-gamma-producing CD8(+) T cells demonstrates that, like Th1 cells, these cells do not express IFN-gammaR2. To define the importance of IFN-gamma signaling for the development of functional CD8(+) T cells, mice either lacking IFN-gammaR2 or overexpressing this protein were examined. While CD8(+) T cell development and function appear normal in IFN-gammaR2(-/-) mice, CD8(+) T cell function in IFN-gammaR2 transgenic is altered. IFN-gammaR2 transgenic CD8(+) T cells are unable to lyse target cells in vitro. However, these cells produce Fas ligand, perforin, and granzyme B, the effector molecules required for killing. Interestingly, TG CD8(+) T cells proliferate normally and produce cytokines, such as IFN-gamma in response to antigenic stimulation. Therefore, although IFN-gamma signaling is not required for the generation of normal cytotoxic T cells, constitutive IFN-gamma signaling can selectively impair the cytotoxic function of CD8(+) T cells.  相似文献   

17.
IL-21, the most recently described member of the common gamma-chain cytokine family, is produced by activated CD4 T cells, whereas CD8 T cells express the IL-21 receptor. To investigate a possible role for IL-21 in the priming of naive CD8 T cells, we examined responses of highly purified naive OT-I CD8 T cells to artificial APCs displaying Ag and B7-1 on their surface. We found that IL-21 enhanced OT-I clonal expansion and supported development of cytotoxic effector function. High levels of IL-2 did not support development of effector functions, but IL-2 was required for optimal responses in the presence of IL-21. IL-12 and IFN-alpha have previously been shown to support naive CD8 T cell differentiation and acquisition of effector functions through a STAT4-dependent mechanism. Here, we show that IL-21 does not require STAT4 to stimulate development of cytolytic activity. Furthermore, IL-21 fails to induce IFN-gamma or IL-4 production and can partially block IL-12 induction of IFN-gamma production. CD8 T cells that differentiate in response to IL-21 have a distinct surface marker expression pattern and are characterized as CD44(high), PD-1(low), CD25(low), CD134(low), and CD137(low). Thus, IL-21 can provide a signal required by naive CD8 T cells to differentiate in response to Ag and costimulation, and the resulting effector cells represent a unique effector phenotype with highly effective cytolytic activity, but deficient capacity to secrete IFN-gamma.  相似文献   

18.
CD4 T cell-dependent CD8 T cell maturation   总被引:7,自引:0,他引:7  
We have investigated the contribution of CD4 T cells to the optimal priming of functionally robust memory CD8 T cell subsets. Intranasal infection of CD4 T cell-deficient (CD4(-/-)) mice with lymphocytic choriomeningitis virus resulted in the elaboration of virus-specific CD8 T cell responses that cleared the infection. However, by comparison with normal mice, the virus-specific CD8 T cells in CD4(-/-) mice were quantitatively and qualitatively different. In normal mice, lymphocytic choriomeningitis virus-specific memory CD8 T cells are CD44(high), many are CD122(high), and a majority of these cells regain expression of CD62L overtime. These cells produce IFN-gamma and TNF-alpha, and a subset also produces IL-2. In the absence of CD4 T cell help, a distinct subset of memory CD8 T cells develops that remains CD62L(low) up to 1 year after infection and exhibits a CD44(int)CD122(low) phenotype. These cells are qualitatively different from their counterparts in normal hosts, as their capacity to produce TNF-alpha and IL-2 is diminished. In addition, although CD4-independent CD8 T cells can contain the infection following secondary viral challenge, their ability to expand is impaired. These findings suggest that CD4 T cell responses not only contribute to the optimal priming of CD8 T cells in chronically infected hosts, but are also critical for the phenotypic and functional maturation of CD8 T cell responses to Ags that are more rapidly cleared. Moreover, these data imply that the development of CD62L(high) central memory CD8 T cells is arrested in the absence of CD4 T cell help.  相似文献   

19.
It has been demonstrated that CD4(+) T cells require Ag persistence to achieve effective priming, whereas CD8(+) T cells are on "autopilot" after only a brief exposure. This finding presents a disturbing conundrum as it does not account for situations in which CD8(+) T cells require CD4(+) T cell help. We used a physiologic in vivo model to study the requirement of Ag persistence for the cross-priming of minor histocompatibility Ag-specific CD8(+) T cells. We report inefficient cross-priming in situations in which male cells are rapidly cleared. Strikingly, the failure to achieve robust CD8(+) T cell activation is not due to a problem with cross-presentation. In fact, by providing "extra help" in the form of dendritic cells (DCs) loaded with MHC class II peptide, it was possible to achieve robust activation of CD8(+) T cells. Our data suggest that the "licensing" of cross-presenting DCs does not occur during their initial encounter with CD4(+) T cells, thus accounting for the requirement for Ag persistence and suggesting that DCs make multiple interactions with CD8(+) T cells during the priming phase. These findings imply that long-lived Ag is critical for efficient vaccination protocols in which the CD8(+) T cell response is helper-dependent.  相似文献   

20.
Cell division drives T cell clonal expansion and differentiation, and is the result of concerted signaling from Ag, costimulatory, and growth factor receptors. How these mitogenic signals are coupled to the cell cycle machinery in primary T cells is not clear. We have focused on the role of p27kip1, a major cyclin-dependent kinase binding protein expressed by CD4+ T cells. Our studies using p27kip1 gene dosage demonstrate that early after activation, p27kip1 acts to promote, rather than inhibit, G1 to S phase progression within the first division cycle. However, throughout subsequent cell divisions p27kip1 behaves as a negative regulator, directly establishing the threshold amount of growth factor signaling required to support continued cell division. During this phase, signals from CD28 and IL-2R cooperate with the TCR to "tune" this threshold by inducing the degradation of p27kip1 protein, and we show that agents that block these pathways require elevated p27kip1 levels for their full antiproliferative activity. Finally, we show that p27kip1 opposes the development of CD4+ T cell effector function, and is required for the full development of anergy in response to a tolerizing stimulus. Our results suggest that p27kip1 plays a complex and important role in the regulation of cell division and effector function in primary CD4+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号