首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystals of cyclomaltodextrin glucanotransferase from Bacillus circulans (EC 2.4.1.19) suitable for high-resolution X-ray analysis were obtained by vapor diffusion against 60% (v/v) 2-methyl 2,4-pentanediol buffered with 100 mM-sodium Hepes, pH 7.55. The crystals have P2(1)2(1)2(1) space group symmetry, with a = 120.4 A, b = 110.9 A and c = 66.4 A, and contain one molecule of 68,000 in the asymmetric unit. Growth of single enzyme crystals was found to require the presence of either alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin, or maltose in high molar excess, a requirement that could not be fulfilled by glucose, the basic building block of these compounds. Although the exact role of cyclic and linear maltodextrins in enzyme crystallization is not yet known, we have preliminary evidence that these compounds are degraded by the enzyme in the crystallization droplet.  相似文献   

2.
Counting of integral numbers of cysteine residues of the reduced and denaturated form of cyclomaltodextrin glucanotransferase (CGTase) from Bacillus circulans var. alkalophilus (ATCC 21783) showed two cysteine residues per enzyme molecule. Titrations of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) led to the same result. No free SH-group was detected in denatured form of CGTase, indicating that the two cysteine residues are linked by one disulfide bridge. Cyclizing activity of the GdmCl-denaturated and reduced enzyme was 13% of that of the native one. Incubation of CGTase with diethylpyrocarbonate (DEP) showed a pseudo-first-order inhibition with second-order rate constant of 3.2 M-1 s-1. Reaction with hydroxylamine and spectroscopic studies implied that inactivation of CGTase by DEP is due to modification of one histidine residue concomitantly with a 50% decrease in the cyclizing activity (t1/2 = 10.8 min). The inhibition was partially reversible. CGTase was protected against inactivation by alpha- and beta-cyclodextrins suggesting that the modified histidine residue is at or near the active site. Conversion of starch with DEP-modified enzyme resulted in a decreased formation of cyclodextrins while the relative amount of reducing sugars increased. Preliminary results on modification of CGTase with other reagents, e.g., Woodward's reagent K, 2,3-butanedione and carbodiimide are included.  相似文献   

3.
The cyclodextrin glucanotransferase (CGTase) gene of alkalophilic Bacillus sp. A2-5a was cloned and expressed in Bacillus subtilis ANA-1 as a host. The DNA region included an open reading frame encoding a 704-amino-acid polypeptide with a typical raw starch-binding motif in its C-terminal region. The CGTase purified from Bacillus sp. A2-5a bound to raw starch as strongly as porcine pancreas α-amylase, as expected from the sequence motif. A chromosomal region (a DNA fragment of about 14.1 kbp) including the CGTase gene was also cloned and the nucleotide sequence was determined. Possible cyclodextrinase and putative cyclodextrin-binding protein genes were found in the flanking region of the CGTase gene, which implied that the novel starch-degradation pathway postulated for a gram-negative bacterium [Klebsiella oxytoca; Fiedler et al. (1996) J Mol Biol 256: 279–291] also exists in a gram-positive bacterium i.e. Bacillus. Received: 6 August 1999 / Received last revision: 8 October 1999 / Accepted: 22 October 1999  相似文献   

4.
Summary An alkalophilic Bacillus firmus secreting the enzyme cyclomaltodextrin glucanotransferase was isolated from soil. The enzyme attacked raw starch to produce cyclodextrins. Maximum cyclodextrins were produced from tapioca starch followed by potato and corn starch. About 49 % of tapioca starch (at 10 and 50 g/l) was converted to cyclodextrins. The main reaction products were and -cyclodextrins with 40 % and 8 % yield respectively. On prolonged incubation small amount of -cyclodextrin was also produced. The ratio of cyclodextrins was dependent on the initial substrate concentration as well as reaction time.NCL communication number 6203  相似文献   

5.
The crystal structure of asparagine 233-replaced cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011 was determined at 1.9 A resolution. While the wild-type CGTase from the same bacterium produces a mixture of mainly alpha-, beta- and gamma-cyclodextrins, catalyzing the conversion of starch into cyclic or linear alpha-1,4-linked glucopyranosyl chains, site-directed mutation of histidine-233 to asparagine changed the nature of the enzyme such that it no longer produced alpha-cyclodextrin. This is a promising step towards an industrial requirement, i.e. unification of the products from the enzyme. Two independent molecules were found in an asymmetric unit, related by pseudo two-fold symmetry. The backbone structure of the mutant enzyme was very similar to that of the wild-type CGTase except that the position of the side chain of residue 233 was such that it is not likely to participate in the catalytic function. The active site cleft was filled with several water molecules, forming a hydrogen bond network with various polar side chains of the enzyme, but not with asparagine-233. The differences in hydrogen bonds in the neighborhood of asparagine-233, maintaining the architecture of the active site cleft, seem to be responsible for the change in molecular recognition of both substrate and product of the mutant CGTase.  相似文献   

6.
The functional characteristics of a beta-cyclodextrin glucanotransferase (CGTase) excreted from alkalophilic Bacillus sp. BL-31 that is highly specific for the intermolecular transglycosylation of bioflavonoids were investigated. The new beta-CGTase showed high specificities for glycosyl acceptor bioflavonoids, including naringin, rutin, and hesperidin, and especially naringin. The transglycosylation of naringin into glycosyl naringin was then carried out under the conditions of 80 units of CGTase per gram of maltodextrin, 5 g/l of naringin, 25 g/l of maltodextrin, and 1 mM Mn2+ ion at 40 degrees C for 6 h, resulting in a high conversion yield of 92.1%.  相似文献   

7.
1-Deoxynojirimycin, a pseudo-monosaccharide, is a strong inhibitor of glucoamylase but a relatively weak inhibitor of cyclodextrin glucanotransferase (CGTase). To elucidate this difference, the crystal structure of the CGTase from alkalophilic Bacillus sp. 1011 complexed with 1-deoxynojirimycin was determined at 2.0 A resolution with the crystallographic R value of 0.154 (R(free) = 0.214). The asymmetric unit of the crystal contains two CGTase molecules and each molecule binds two 1-deoxynojirimycins. One 1-deoxynojirimycin molecule is bound to the active center by hydrogen bonds with catalytic residues and water molecules, but its binding mode differs from that expected in the substrate binding. Another 1-deoxynojirimycin found at the maltose-binding site 1 is bound to Asn-667 with a hydrogen bond and by stacking interaction with the indole moiety of Trp-662 of molecule 1 or Trp-616 of molecule 2. Comparison of this structure with that of the acarbose-CGTase complex suggested that the lack of stacking interaction with the aromatic side chain of Tyr-100 is responsible for the weak inhibition by 1-deoxynojirimycin of the enzymatic action of CGTase.  相似文献   

8.
On screening for microorganisms in soil obtained in Japan that produce large amounts of gamma-cyclodextrin (gamma-CD), we identified a novel alkalophilic bacterium, Bacillus clarkii 7364. The cyclodextrin glucanotransferase (CGTase) secreted into the culture medium by this bacterium was purified by affinity chromatography on a gamma-CD-immobilized column, followed by chromatography on a gel filtration column. The enzyme converted 13.7% of pre-gelatinized potato starch (10% w/w per reaction mixture) into CDs, and the majority (79%) of the product CDs was of the gamma form. This property is quite unique among known CGTases and thus we named this enzyme gamma-CGTase. The N-terminal and internal amino acid sequences of gamma-CGTase were determined and used to design PCR primers for amplification of the nucleotide sequence that encodes the gamma-CGTase gene. The entire gene sequence amplified by PCR was determined and then cloned into E. coli. The recombinant enzyme synthesized by E. coli retained biochemical properties quite similar to those of the original one. Comparison of the deduced amino acid sequence of gamma-CGTase with those of other known CGTases that have different product specificities revealed the importance of subsites -3 and -7 for the preferential gamma-cyclization activity.  相似文献   

9.
Cyclomaltodextrin glucanotransferase (EC 2.4.1.19, abbreviated as CGTase) derived from Bacillus stearothermophilus produced a series of transfer products from a mixture of cyclomaltohexaose and cyclic tetrasaccharide (cyclo[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->], CTS). Of the transfer products, only two components, saccharides A and D, remained and accumulated after digestion with glucoamylase. The total combined yield of the saccharides reached 63.4% of total sugars, and enzymatic and instrumental analyses revealed the structures of both saccharides. Saccharide A was identified as 4-mono-O-alpha-glucosyl-CTS, [-->6)-[alpha-D-Glcp-(1-->4)]-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->], and sachharide D was 4,4'-di-O-alpha-glucosyl-CTS, [-->6)-[alpha-D-Glcp-(1-->4)]-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-[alpha-D-Glcp-(1-->4)]-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. These structures led us to conclude that the glycosyltransfer catalyzed by CGTase was specific to the C4-OH of the 6-linked glucopyranosyl residues in CTS.  相似文献   

10.
A newly isolated Bacillus species, which grew optimally at 30°C and pH 10, produced a carboxymethylcellulase in a medium containing 10 g CM-cellulose/l. The enzyme, when partially purified by gel filtration, had a mass of about 29 kDa as determined by both SDS-PAGE and gel filtration chromatography. It was optimally active at pH 9.5 and 40°C, and was stable from pH 7 to 11 at 4°C for 24 h. The enzyme was stimulated by Ca2+ (1mm) but was completely inhibited by Hg2+ (1mm). Neither EDTA nor EGTA (10mm) affected the activity.The author is with the Department of Biological Sciences, University of Jordan. PO Box 2686, Amman 11181, Jordan  相似文献   

11.
Two chromatographic processes for purification of cyclodextringlucanotransferase (CGTase) from Bacillus sp. 1070 was carried out. The enzyme has been purified into 9.5 times on Butyl-Toyopearl and followed immobilized metal ion chromatography on Cu(II)-Iminodiacetic (IDA)-agarose. By the application of second purification scheme (chromatography on Butyl-Toyopearl and DEAE-Sephacel) the specific activity of CGTase has folded into 13.5 times. The purity of enzyme was shown to be approximately 90% by SDS-electrophoreses data. It was shown that isolated enzyme has two isoelectric points estimated as 5.1 and 5.3.  相似文献   

12.
Alkaline protease (EC 3.4.21.14) activity, suitable for use in detergents, was detected in the alkaline culture medium of Bacillus sp. KSM-K16, which was originally isolated from soil. The enzyme, designated M protease, was purified to homogeneity from the culture broth by column chromatographies. The N-terminal amino acid sequence was Ala-Gln-Ser-Val-Pro-Trp-Gly-Ile-Ser-Arg-Val-Gln-Ala-Pro-Ala-Ala-His-Asn-Arg-Gly-Leu-Thr-Gly. The molecular mass of the protease was 28 kDa, and its isoelectric point was close to pH 10.6. Maximum activity toward casein was observed at 55°C and at pH 12.3 in 50 mM phosphate/NaOH buffer. The activity was inhibited by phenylmethylsulfonyl flouride and chymostatin. The enzyme was very stable in long-term incubation with liquid detergents at 40°C. The enzyme cleaved the oxidized insulin B chain initially at Leu15-Tyr16 and efficiently at ten more sites. Among various oligopeptidyl p-nitro-anilides (pNA) tested, N-succinyl-Ala-Ala-Pro-Phe-pNA was efficiently hydrolyzed by M protease. M protease was precipitated in (NH4)2SO4-saturated acetate buffer (pH 5.0) as plank-like cyrstals.  相似文献   

13.
A novel raw starch degrading cyclomaltodextrin glucanotransferase (CGTase; E.C. 2.4.1.19), produced by Bacillus firmus, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The molecular weight of the pure protein was estimated to be 78 000 and 82 000 Da, by SDS-PAGE and gel filtration, respectively. The pure enzyme had a pH optimum in the range 5.5–8.5. It was stable over the pH range 7–11 at 10 °C, and at pH 7.0 at 60 °C. The optimum temperature for enzyme activity was 65 °C. In the absence of substrate, the enzyme rapidly lost its activity above 30 °C. K m and k cat for the pure enzyme were 1.21 mg/ml and 145.17 μM/mg per minute respectively, with soluble starch as the substrate. For cyclodextrin production, tapioca starch was the best substrate used when gelatinized, while wheat starch was the best substrate used when raw. This CGTase could degrade raw wheat starch very efficiently; up to 50% conversion to cyclodextrins was obtained from 150 g/l starch without using any additives. The enzyme produced α-, β- and γ-cyclodextrins in the ratio of 0.2:9.2:0.6 and 0.2:8.6:1.2 from gelatinized tapioca starch and raw wheat starch with 150 g/l concentration respectively, after 18 h incubation. Received: 25 September 1998 / Received revision: 15 December 1998 / Accepted: 21 December 1998  相似文献   

14.
Cellulase-free xylanase from an alkalophilic Bacillussp. was maximally active at pH 10 and 60 °C. Enzyme treatment of ramie fibers removed 40% of its hemicellulose and some chromophoric material which resulted in a brightness increment of 5.2% and boosted the effect of H2O2bleaching. Enzyme-treated ramie fibers were increased by 3.9% in elongation and retained appropriate tenacity. X-ray and scanning electron micrograph studies revealed some changes in fiber structure.  相似文献   

15.
从土壤分离物中筛选到一株环糊精葡萄糖基转移酶 (CGTase)产生菌 4 0 3,96h发酵酶活为 0 95U mL。经紫外辐射和硫酸二乙酯复合诱变而获得突变株CLS4 0 3,96h发酵酶活达 1 36U mL ,提高 4 3%。该突变菌株被鉴定为地衣芽孢杆菌 (Bacilluslicheniformis) ,产CGTase的最佳碳源为可溶性淀粉 ,最佳氮源为硝酸铵 ,最适初始pH为 6 5 ,最适培养温度为 35℃ ,发酵期间CGTase的产生高峰 (第 96h)滞后于菌体生物量高峰 (第 4 8h) 2d。菌株所产CGTase的最适反应pH为 6 0 ,最适温度为 5 5℃ ,在pH 6 0~ 7 5间和 5 0℃下保持 1h后的剩余酶活均达 90 %以上 ;酶液中适量添加Ca2 能大幅提高CGTase在 5 5℃下的稳定性。经高效液相色谱分析 ,CGTase作用于淀粉后的产物以α 环糊精为主 ,β 环糊精为次 ,二者比例为 2 4 7∶1,环糊精总产率达 2 9 8% ,但产物中不含γ 环糊精  相似文献   

16.
The proteolytic activity of an alkalophilic Bacillus sp. (NCL 87-6-10) correlates with xylanase secretion. Addition of DL-norvaline, glycine or Casamino acids to a medium formulated for xylanase production resulted in 2-5-fold enhancement of xylanase secretion (8 to 45 IU/ml). Inhibition of proteolytic activity is a possible mechanism for enhanced xylanase activity.  相似文献   

17.
Bacillus sp. RK9 was isolated from soil and produced a constitutive polygalacturonate lyase. Production of the enzyme required the presence of complex nitrogen (peptone and yeast extract). Highest activity was obtained with an initial pH of 9.7. The organism was alkalophilic. No growth occurred below pH 7.5. The enzyme was purified by salt precipitation and diethylaminoethyl (DEAE) cellulose ion-exchange chromatography. The pH optimum for activity was 10.0 in 0.01 M glycine-NaOH buffer. Calcium alone, of divalent cations, activated the enzyme by 2.9-fold. Complete inhibition of enzyme activity was achieved by 1 mM ethylenediaminetetraacetic acid (EDTA). Hydrolysis of substrate occurred in a random fashion and the enzyme was 50% more active towards acid soluble pectic acid (ASPA) than towards sodium polypectate.  相似文献   

18.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 micrometers in diameter. The new isolate grew at temperatures between 60 and 95 degrees C (optimum, 85 degrees C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120 degrees C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100 degrees C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110 degrees C. The enzyme formed mainly alpha-cyclodextrin with small amounts of beta- and gamma-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

19.

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol β-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol β-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol β-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.

  相似文献   

20.
Alkalophilic Bacillus sp. strain C-59 could grow well on an alkaline medium containing K2CO3, as well as Na2CO3, but did not grow on K+-depleted medium. Right-side-out membrane vesicles, energized in the absence of Na+, however, could not take up [14C]methylamine actively, while vesicles equilibrated with 10 mM NaCl actively took up [14C]methylamine. The uptake of [14C]serine was also stimulated by the addition of Na+, and the imposition of a sodium gradient caused transient uptake. These results indicated that an Na+/H+ antiporter was involved in pH homeostasis and generation of an electrochemical sodium gradient in strain C-59 even though a growth requirement for Na+ was not evident. The efflux of 22Na+ from 22Na+-loaded vesicles was more rapid at pH 9.5 than at pH 7 in the presence of an electron donor. On the other hand, vesicles at pH 7 showed more rapid efflux than at pH 9.5 when the antiporter was energized by a valinomycin-mediated K+ diffusion potential (inside negative).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号