首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, proteins likely to be important components of calcium influx pathways. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PI(4,5)P2 hydrolysis through a mechanism in which IP3 receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that the accurate turnover of PI(4,5)P2 generated lipid messengers in essential for regulating TRP and TRPL activity. TRP channels also appear to exist in the context of a macromolecular complex containing key components involved in activation such as phospholipase Cβ and protein kinase C. This complex may be important for activation. The role of these protein and lipid elements in regulating TRP and TRPL activity is discussed in this review.  相似文献   

2.
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, proteins likely to be important components of calcium influx pathways. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PI(4,5)P(2) hydrolysis through a mechanism in which IP(3) receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that the accurate turnover of PI(4,5)P(2) generated lipid messengers in essential for regulating TRP and TRPL activity. TRP channels also appear to exist in the context of a macromolecular complex containing key components involved in activation such as phospholipase Cbeta and protein kinase C. This complex may be important for activation. The role of these protein and lipid elements in regulating TRP and TRPL activity is discussed in this review.  相似文献   

3.
Roger C. Hardie   《Cell calcium》2003,33(5-6):385
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

4.
Tibor Rohacs   《Cell calcium》2009,45(6):554-565
Transient receptor potential (TRP) channels are involved in a wide range of physiological processes, and characterized by diverse activation mechanisms. Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PIP2, or PtdIns(4,5)P2] recently emerged as regulators of many TRP channels. Several TRP channels require PIP2 for activity, and depletion of the lipid inhibits them. For some TRP channels, however, phosphoinositide regulation seems more complex, both activating and inhibitory effects have been reported. This review will discuss phosphoinositide regulation of members of the TRPM (Melastatin), TRPV (Vanilloid), TRPA (Ankyrin) and TRPP (Polycystin) families. Lipid regulation of TRPC (Canonical) channels is discussed elsewhere in this volume.  相似文献   

5.
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.  相似文献   

6.
Stimulation of receptor-operated (ROCs) and store-operated (SOCs) Ca2+-permeable cation channels by vasoconstrictors has many important physiological functions in vascular smooth muscle. The present review indicates that ROCs and SOCs with diverse properties in different blood vessels are likely to be explained by composition of different subunits from the canonical transient receptor potential (TRPC) family of cation channel proteins. In addition we illustrate that activation of native TRPC ROCs and SOCs involves different phospholipase-mediated transduction pathways linked to generation of diacylglycerol (DAG). Moreover we describe recent novel data showing that the endogenous phospholipid phosphoinositol 4,5-bisphosphate (PIP2) has profound and contrasting actions on TRPC ROCs and SOCs. Optimal activation of a native TRPC6 ROC by angiotensin II (Ang II) requires both depletion of PIP2 and generation of DAG which leads to stimulation of TRPC6 via a PKC-independent mechanism. The data also indicate that PIP2 has a marked constitutive inhibitory action of TRPC6 and DAG and PIP2 are physiological antagonists on TRPC6 ROCs. In contrast PIP2 stimulates TRPC1 SOCs and has an obligatory role in activation of these channels by store-depletion which requires PKC-dependent phosphorylation of TRPC1 proteins. Finally, we conclude that interactions between PIP2 bound to TRPC proteins at rest, generation of DAG and PKC-dependent phosphorylation of TRPC proteins have a fundamental role in activation mechanisms of ROCs and SOCs in vascular smooth muscle.  相似文献   

7.
The Drosophila light activated TRP and TRPL channels have been a model for TRPC channel gating. Several gating mechanisms have been proposed following experiments conducted on photoreceptor and tissue cultured cells. However, conclusive evidence for any mechanism is still lacking. Here, we show that the Drosophila TRPL channel expressed in tissue cultured cells is constitutively active in S2 cells but is silent in HEK cells. Modulations of TRPL channel activity in different expression system by pharmacology or specific enzymes, which change the lipid content of the plasma membrane, resulted in conflicting effects. These findings demonstrate the difficulty in elucidating TRPC gating, as channel behavior is expression system dependent. However, clues on the gating mechanism may arise from understanding how different expression systems affect TRPC channel activation.  相似文献   

8.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1–TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca2+ influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP2) hydrolysis, generation of IP3 and DAG, and IP3-induced Ca2+ release from the intracellular Ca2+ store via inositol trisphosphate receptor (IP3R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca2+ entry mechanisms. The former is regulated by the emptying/refilling of internal Ca2+ store(s) while the latter depends on PIP2 hydrolysis (due to changes in PIP2 per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca2+ entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca2+]i signals which are critical for precise control of downstream cellular functions.  相似文献   

9.
The Drosophila light activated TRP and TRPL channels have been a model for TRPC channel gating. Several gating mechanisms have been proposed following experiments conducted on photoreceptor and tissue cultured cells. However, conclusive evidence for any mechanism is still lacking. Here, we show that the Drosophila TRPL channel expressed in tissue cultured cells is constitutively active in S2 cells but is silent in HEK cells. Modulations of TRPL channel activity in different expression system by pharmacology or specific enzymes, which change the lipid content of the plasma membrane, resulted in conflicting effects. These findings demonstrate the difficulty in elucidating TRPC gating, as channel behavior is expression system dependent. However, clues on the gating mechanism may arise from understanding how different expression systems affect TRPC channel activation.  相似文献   

10.
11.
TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P2-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P2 regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.  相似文献   

12.
Transient receptor potential (TRP) channels are essential components of biological sensors that detect changes in the environment in response to a myriad of stimuli. A major difficulty in the study of TRP channels is the lack of pharmacological agents that modulate most members of the TRP superfamily. Notable exceptions are the thermoTRPs, which respond to either cold or hot temperatures and are modulated by a relatively large number of chemical agents. In the present study we demonstrate by patch clamp whole cell recordings from Schneider 2 and Drosophila photoreceptor cells that carvacrol, a known activator of the thermoTRPs, TRPV3 and TRPA1 is an inhibitor of the Drosophila TRPL channels, which belongs to the TRPC subfamily. We also show that additional activators of TRPV3, thymol, eugenol, cinnamaldehyde and menthol are all inhibitors of the TRPL channel. Furthermore, carvacrol also inhibits the mammalian TRPM7 heterologously expressed in HEK cells and ectopically expressed in a primary culture of CA3–CA1 hippocampal brain neurons. This study, thus, identifies a novel inhibitor of TRPC and TRPM channels. Our finding that the activity of the non-thermoTRPs, TRPL and TRPM7 channels is modulated by the same compound as thermoTRPs, suggests that common mechanisms of channel modulation characterize TRP channels.  相似文献   

13.
14.
The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or 'gates'. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1-TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.  相似文献   

15.
Background: Catalase catalyzes the reduction of H2O2 to water and it can also remove organic hydroperoxides. Nervous system in body is especially sensitive to free radical damage due to rich content of easily oxidizible fatty acids and relatively low content of antioxidants including catalase. Recent studies indicate that reactive oxygen species actually target active channel function, in particular TRP channels. I review the effects of catalase on Ca2+ signaling and on TRP channel activation in neuroglial cells such as microglia and substantia nigra.

Materials: Review of the relevant literature and results from recent our basic studies, as well as critical analyses of published systematic reviews were obtained from the pubmed and the Science Citation Index.

Results: It was observed that oxidative stress-induced activations of TRPM2, TRPC3, TRPC5 and TRPV1 cation channels in neuronal cells are modulated by catalase, suggesting antioxidant-dependent activation/inhibition of the channels. I provide also, a general overview of the most important oxidative stress-associated changes in neuronal mitochondrial Ca2+ homeostasis due to oxidative stress-induced channel neuropathies. Catalase incubation induces protective effects on rat brain mitochondrial function and neuronal survival. A decrease in catalase activity through oxidative stress may have an important role in etiology of Parkinson’s disease and sensory pain.

Conclusion: The TRP channels can be activated by oxidative stress products, opening of nonspecific cation channels would result in Ca2+ influx, and then elevation of cytoplasmic free Ca2+ could stimulate mitochondrial Ca2+ uptake. Catalase modulates oxidative stress-induced Ca2+ influx and some TRP channels activity in neuronal cells.  相似文献   

16.
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca2+ channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in CaV2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP2), a palmitoylated accessory subunit (β2a) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M1 muscarinic receptors may stimulate multiple lipases to break down the PIP2 associated with VGCCs and leave PIP2's freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.  相似文献   

17.
During vascular interventions, oxidized low-density lipoprotein and lysophosphatidylcholine (lysoPC) accumulate at the site of arterial injury, inhibiting endothelial cell (EC) migration and arterial healing. LysoPC activates canonical transient receptor potential 6 (TRPC6) channels, leading to a prolonged increase in intracellular calcium ion concentration that inhibits EC migration. However, an initial increase in intracellular calcium ion concentration is required to activate TRPC6, and this mechanism remains elusive. We hypothesized that lysoPC activates the lipid-cleaving enzyme phospholipase A2 (PLA2), which releases arachidonic acid (AA) from the cellular membrane to open arachidonate-regulated calcium channels, allowing calcium influx that promotes externalization and activation of TRPC6 channels. The focus of this study was to identify the roles of calcium-dependent and/or calcium-independent PLA2 in lysoPC-induced TRPC6 externalization. We show that lysoPC induced PLA2 enzymatic activity and caused AA release in bovine aortic ECs. To identify the specific subgroup and the isoform(s) of PLA2 involved in lysoPC-induced TRPC6 activation, transient knockdown studies were performed in the human endothelial cell line EA.hy926 using siRNA to inhibit the expression of genes encoding cPLA2α, cPLA2γ, iPLA2β, or iPLA2γ. Downregulation of the β isoform of iPLA2 blocked lysoPC-induced release of AA from EC membranes and TRPC6 externalization, as well as preserved EC migration in the presence of lysoPC. We propose that blocking TRPC6 activation and promoting endothelial healing could improve the outcomes for patients undergoing cardiovascular interventions.  相似文献   

18.
TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs), another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+ i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+ i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.  相似文献   

19.
TRP channels in Drosophila photoreceptors: the lipid connection   总被引:2,自引:0,他引:2  
Hardie RC 《Cell calcium》2003,33(5-6):385-393
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP(2)). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

20.
Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号