首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

2.
Macroevolutionary patterns, often inferred from metrics of community relatedness, are often used to ascertain major evolutionary processes shaping communities. These patterns have been shown to be informative of biogeographic barriers, of habitat suitability and invasibility (especially with regard to environmental filtering), and of regions that function as evolutionary cradles (i.e., sources of diversification) or museums (i.e., regions of reduced extinction). Here, we analyzed continental datasets of mammal and bird distributions to identify primary drivers of community evolution on the African continent for mostly endothermic vertebrates. We find that underdispersion (i.e., relatively low phylogenetic diversity compared to species richness) closely correlates with specific ecoregions that have been identified as climatic refugia in the literature, regardless of whether these specific regions have been touted as cradles or museums. Using theoretical models of identical communities that differ only with respect to extinction rates, we find that even small suppressions of extinction rates can result in underdispersed communities, supporting the hypothesis that climatic stability can lead to underdispersion. We posit that large‐scale patterns of under‐ and overdispersion between regions of similar species richness are more reflective of a particular region’s extinction potential, and that the very nature of refugia can lead to underdispersion via the steady accumulation of species richness through diversification within the same ecoregion during climatic cycles. Thus, patterns of environmental filtering can be obfuscated by environments that coincide with biogeographic refugia, and considerations of regional biogeographic history are paramount for inferring macroevolutionary processes.  相似文献   

3.
Environmental change may affect predator-prey interactions in lakes through deterioration of visual conditions affecting foraging success of visually oriented predators. Environmental change in lakes includes an increase in humic matter causing browner water and reduced visibility, affecting the behavioural performance of both piscivores and prey. We studied diurnal patterns of prey selection in piscivorous pikeperch (Sander lucioperca) in both field and laboratory investigations. In the field we estimated prey selectivity and prey availability during day and night in a clear and a brown water lake. Further, prey selectivity during day and night conditions was studied in the laboratory where we manipulated optical conditions (humic matter content) of the water. Here, we also studied the behaviours of piscivores and prey, focusing on foraging-cycle stages such as number of interests and attacks by the pikeperch as well as the escape distance of the prey fish species. Analyses of gut contents from the field study showed that pikeperch selected perch (Perca fluviatilis) over roach (Rutilus rutilus) prey in both lakes during the day, but changed selectivity towards roach in both lakes at night. These results were corroborated in the selectivity experiments along a brown-water gradient in day and night light conditions. However, a change in selectivity from perch to roach was observed when the optical condition was heavily degraded, from either brown-stained water or light intensity. At longer visual ranges, roach initiated escape at distances greater than pikeperch attack distances, whereas perch stayed inactive making pikeperch approach and attack at the closest range possible. Roach anti-predatory behaviour decreased in deteriorated visual conditions, altering selectivity patterns. Our results highlight the importance of investigating both predator and prey responses to visibility conditions in order to understand the effects of degrading optical conditions on piscivore-prey interaction strength and thereby ecosystem responses to brownification of waters.  相似文献   

4.
5.
Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross‐ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi‐modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross‐scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual‐level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.  相似文献   

6.
1. Community concordance measures the degree to which patterns in community structure in a set of sites are similar between two different taxonomic groups. Although seldom incorporated into studies of lake ecosystems, aquatic birds can be influenced by the same environmental features of lakes which affect fish and invertebrates, and can interact with these organisms directly as predators, competitors or prey. We surveyed lakes in north-central Alberta, Canada, to determine if co-occurring fish and aquatic bird assemblages displayed concordance, and assessed the relative importance of environmental and biotic factors in contributing to observed concordance.
2. In 41 lakes (3–305 ha), we encountered seven species of fish and thirty-one avian taxa which subsequently were used in multivariate analyses. Fish assemblages dominated by large piscivores were in large deep lakes, whereas fishless lakes and lakes with only small-bodied fish were small and shallow, and thus, prone to winter hypoxia. Bird assemblages displayed three general patterns: (a) small shallow lakes supported a 'core' of widespread species (between three and eight species per lake); (b) large, deep lakes supported more species (between 11 and 16), including large, aerially foraging piscivores; and (c) large, shallow lakes supported the most species (between 15 and 23), including many ducks.
3. Randomization tests of matrix concordance and Mantel tests both showed that fish and bird assemblages were significantly concordant. Concordance reflected the fact that both groups were strongly affected by the same key environmental factors, principally lake size and maximum depth, and to a lesser extent, productivity and geographic isolation. Direct interactions between birds and fish, such as predation and competition, appeared to play much smaller roles in shaping the two assemblages.  相似文献   

7.
Diamond (Assembly of species communities. In: Cody ML, Diamond JM, editors. Ecology and evolution of communities. Cambridge: Belknap. p 342–444 ( 1975 )) argued that interspecific competition between species occupying similar niches results in a nonrandom pattern of species distributions. In particular, some species pairs may never be found in the same community due to competitive exclusion. Rigorous analytical methods have been developed to investigate the possible role that interspecific competition has on the evolution of communities. Many studies that have implemented these methods have shown support for Diamond's assembly rules, yet there are numerous exceptions. We build on this previous research by examining the co‐occurrence patterns of primate species in 109 communities from across the world. We used EcoSim to calculate a checkerboard (C) score for each region. The C score provides a measure of the proportion of species pairs that do not co‐occur in a set of communities. High C scores indicate that species are nonrandomly distributed throughout a region, and interspecific competition may be driving patterns of competitive exclusion. We conducted two sets of analyses. One included all primate species per region, and the second analysis assigned each species to one of four dietary guilds: frugivores, folivores, insectivores, and frugivore‐insectivores. Using all species per region, we found significantly high C scores in 9 of 10 regions examined. For frugivores, we found significantly high‐C scores in more than 50% of regions. In contrast, only 23% of regions exhibited significantly high‐C scores for folivores. Our results suggest that communities are nonrandomly structured and may be the result of greater levels of interspecific competition between frugivores compared to folivores. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co‐occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology. Am. J. Primatol. 75:170‐185, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Habitat subdivision causes changes in food web structure   总被引:1,自引:1,他引:0  
Theory suggests that the response of communities to habitat subdivision depends on both species' characteristics and the extent to which species interact. For species with dynamics that are independent of other species, subdivision is expected to promote regional extinction as populations become small and isolated. By contrast, intermediate levels of subdivision can facilitate persistence of strongly interacting species. Consistent with this prediction, experimental subdivision lengthened persistence of some species, altering the extent of food web collapse through extinction. Extended persistence was associated with immigration rescuing a basal prey species from local extinction. As predicted by food web theory, habitat subdivision reduced population density of a top predator. Removal of this top predator from undivided microcosms increased the abundance of two other predator species, and these changes paralleled those produced by habitat subdivision. These results show that species interactions structured this community, and illustrate the need for investigations of other communities.  相似文献   

10.
Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in ‘abundance size spectra’, a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size‐structured ecosystems—the relationship between the sizes of predators and their prey (predator–prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator–prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community‐level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community‐level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community‐level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.  相似文献   

11.
The growth of metacommunity ecology as a subdiscipline has increased interest in how processes at different spatial scales structure communities. However, there is still a significant knowledge gap with respect to relating the action of niche- and dispersal-assembly mechanisms to observed species distributions across gradients. Surveys of the larval dragonfly community (Odonata: Anisoptera) in 57 lakes and ponds in southeast Michigan were used to evaluate hypotheses about the processes regulating community structure in this system. We considered the roles of both niche- and dispersal-assembly processes in determining patterns of species richness and composition across a habitat gradient involving changes in the extent of habitat permanence, canopy cover, area, and top predator type. We compared observed richness patterns and species distributions in this system to patterns predicted by four general community models: species sorting related to adaptive trade-offs, a developmental constraints hypothesis, dispersal assembly, and a neutral community assemblage. Our results supported neither the developmental constraints nor the neutral-assemblage models. Observed patterns of richness and species distributions were consistent with patterns expected when adaptive tradeoffs and dispersal-assembly mechanisms affect community structure. Adaptive trade-offs appeared to be important in limiting the distributions of species which segregate across the habitat gradient. However, dispersal was important in shaping the distributions of species that utilize habitats with a broad range of hydroperiods and alternative top predator types. Our results also suggest that the relative importance of these mechanisms may change across this habitat gradient and that a metacommunity perspective which incorporates both niche- and dispersal-assembly processes is necessary to understand how communities are organized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Werner Ulrich 《Oikos》2004,107(3):603-609
The question whether species co-occurrence patterns are non-random has intrigued ecology for more than two decades. Recently Gotelli and McCabe used meta-analysis to show that natural assemblages indeed tend to have non-random species co-occurrence patterns and that these patterns are in line with the predictions of Diamond's assembly rule model. Here I show that neutral ecological drift models are able to generate patterns in line with Diamond's assembly rules and very similar to the empirical results in Gotelli and McCabe. Ecological drift shifted species co-occurrence patterns (measured by C-scores, checkerboard scores and species combination scores) of model species placed into a grid of the 25 cells (sites; metacommunity sizes 5 to 25 species with 100 individuals each) significantly from an initial random pattern towards a pattern predicted by the assembly rule model of Diamond. These findings imply that instead of asking whether natural communities are structured according to some assembly rules we should ask whether these non-random patterns are generated by species interactions or by stochastic drift processes.  相似文献   

13.
Food and feeding ecology of piscivorous fishes at Lake St Lucia, Zululand   总被引:3,自引:0,他引:3  
The food and feeding ecology of piscivorous fish in Lake St Lucia was monitored for two years. Piscivorous fishes feed predominantly on the planktivorous Gilchristella aestuarius and Thryssa vitrirostris but a wide range of prey species was recorded. Numbers of the predominant piscivores, Argyrosomus hololepidotus and Elops machnata , in an area appear to be related to the densities of their major prey, T. vitrirostris and G. aestuarius . Large piscivorous fishes are restricted to the deeper portions of the lake, whereas small piscivores such as Johnius belengerii and Terapon jarbua feed predominantly on small fishes in the littoral zone. The highly significant correlation between the composition of prey fish species in the lake and prey fish species in the diet of piscivorous fishes, indicates that piscivores are feeding in a density dependent manner. However, factors such as habitat, fish size and swimming speed of prey species are shown to be important in prey selection. Juvenile fish of species such as Sarotherodon mossambicus, Liza macrolepis and Acanthopagrus berda remain in shallow marginal areas, thus avoiding large piscivorous fishes. However by frequenting shallow areas these species become vulnerable to bird predators, especially egrets and herons.  相似文献   

14.
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.  相似文献   

15.
Many of the most abundant small and juvenile fishes within shallow water estuarine nursery habitats consume other fish to some degree but have rarely been considered as potentially important predators in the functioning of these systems because of the low (<50%) average occurrence of fish in their diets. Predation by abundant minor piscivores on new recruits when they first enter the nursery may make a significant contribution to the predation mortality of this critical life-history stage. To determine the potential importance of minor piscivores as predators on new recruits, temporal patterns in the diets of 15 common species of minor piscivores were examined and related to the abundance of new recruits (≤20 mm FL) in biweekly seine samples over 13 months in shallow (<1.5 m) sandy habitats in the Ross River estuary in north-eastern Queensland, Australia. The high spatial patchiness of new recruits made it difficult to correlate their abundance with their consumption by minor piscivores, and there was no relationship detected between the abundance of new recruits and the occurrence of fish in the diets of minor piscivores. To gain broader insight into spatio-temporal patterns in the consumption of fish prey by minor piscivores, we utilised a collection of fishes sampled during various studies over 6 years from 17 estuaries in the region to examine the diets of >3500 individuals from 20 spp. of minor piscivores. Patterns in the consumption of fish prey by these minor piscivores, especially the highly abundant sparids, sillaginids and ambassids, revealed that the low average occurrence of fish in their diet greatly underestimated the predation pressure imposed by these on fish prey at particular locations and times. For most sampling occasions and locations few minor piscivores consumed fish prey (consumed by 0% of individuals examined), while occasionally a large proportion of individuals within a taxon did so (50–100% of individuals consumed fish prey). Often at such times/locations multiple species of minor piscivores simultaneously preyed heavily on fish. When minor piscivores consumed fish, they preyed mainly on small new recruits. Because many of these minor piscivores are relatively recent recruits, many of the small and juvenile fishes believed to gain refuge in shallow estuarine nurseries may themselves be important predators on fish subsequently recruiting to these habitats, and so potentially play a significant role in structuring estuarine fish faunas and the functioning of shallow water nurseries.  相似文献   

16.
Increased industrial activities on the Peace and Athabasca River systems have raised concerns about cumulative impacts on fish and water resources downstream, in the Slave River of Alberta and the Northwest Territories, Canada. Because very little information was available on the fish communities in this system, we examined spatial and temporal patterns of diet for nine species (four piscivores and five invertebrate feeders) from three different types of habitat along the lower Slave River system and assessed trophic relationships within the communities. All actively feeding species exhibited seasonal variations in diet within and among the study areas. Dietary overlap was generally low throughout all seasons and locations. In the lower Slave River and its major tributary, the Salt River, substantial dietary overlap between piscivores (particularly walleye, Stizostedion vitreum), and invertebrate feeders occurred in the spring. In the summer no overlap occurred as walleye shifted to a more piscivorous diet, attaining a moderate degree of overlap with northern pike, Esox lucius. Compared with the Slave River, which is a large but homogeneous system upstream of its delta at Great Slave Lake, there was a greater diversity of actively feeding invertebrate feeders in the Salt River. Three of the latter were benthic feeders exhibiting moderate degrees of diet overlap during spring and summer. During the fall, few fish were feeding. Most fishes in the lower Slave River system are generalist, opportunistic feeders, consuming a number of different prey, the importance of which varies spatially and seasonally, as the abundance of these prey varies in the environment.  相似文献   

17.
1. Yellow perch (Perca flavescens) are often the only surviving fish species in acidified lakes. We studied four lakes along a gradient of recovery from acidification and that had different food web complexities. All had abundant yellow perch, two had low piscivore abundance, one had a well‐established piscivore population and one was manipulated by introducing piscivorous smallmouth bass (Micropterus dolomieu). We hypothesised that there would be strong effects on perch abundance, behaviour and diet induced by the presence of piscivores. 2. In the manipulated lake, the bass reduced yellow perch abundance by 75% over a 2‐year period. Concomitantly, perch use of the pelagic habitat fell from 48 to 40%. 3. In contrast to findings from less disturbed systems, yellow perch in the littoral zone of the manipulated lake did not strongly shift from zooplankton to benthic food sources after the arrival of piscivores. Diet analysis using stable carbon isotopes revealed a strong continued reliance on zooplankton in all lakes, independent of the degree of piscivory. The failure to switch to benthos in the refuge area of the littoral zone is most likely related to the depauperate benthos communities in these formerly acidified lakes. 4. Yellow perch in lakes recovering from acidification face a considerable ecological challenge as the necessary switch to benthic diet is hindered by a low abundance of benthos. The arrival of piscivores in these recovering lakes imposes further restrictions on perch access to food items. We infer that future recovery of perch populations (and higher trophic levels) will have to be preceded by the re‐establishment of diverse benthic macroinvertebrate communities in these lakes.  相似文献   

18.
An organism''s body size plays an important role in ecological interactions such as predator–prey relationships. As predators are typically larger than their prey, this often leads to a strong positive relationship between body size and trophic position in aquatic ecosystems. The distribution of body sizes in a community can thus be an indicator of the strengths of predator–prey interactions. The aim of this study was to gain more insight into the relationship between fish body size distribution and trophic position in a wide range of European lakes. We used quantile regression to examine the relationship between fish species'' trophic position and their log‐transformed maximum body mass for 48 fish species found in 235 European lakes. Subsequently, we examined whether the slopes of the continuous community size distributions, estimated by maximum likelihood, were predicted by trophic position, predator–prey mass ratio (PPMR), or abundance (number per unit effort) of fish communities in these lakes. We found a positive linear relationship between species'' maximum body mass and average trophic position in fishes only for the 75% quantile, contrasting our expectation that species'' trophic position systematically increases with maximum body mass for fish species in European lakes. Consequently, the size spectrum slope was not related to the average community trophic position, but there were negative effects of community PPMR and total fish abundance on the size spectrum slope. We conclude that predator–prey interactions likely do not contribute strongly to shaping community size distributions in these lakes.  相似文献   

19.
Asymmetries in responses to climate change have the potential to alter important predator–prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968–2014) and with a doubling in CO2. Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator–prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species’ range it occupied and caused a potential reduction in its ability to exert top‐down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience.  相似文献   

20.
The number of species that live in a habitat typically declines as that habitat becomes more isolated. However, the influence of habitat isolation on patterns of food web structure, in particular the ratio of predator to prey species richness, is less well understood. We placed aquatic mesocosms at varying distances from ponds that acted as sources of potential colonists; then we examined how isolation affected the ratio of predator:prey species richness in the communities that assembled. In the final sampling, a total of 21 species (12 prey and 9 predators) of insects, crustaceans, and amphibians had colonized the mesocosms. We found that total species richness, as well as the richness of predators and prey, declined with increasing isolation. However, predator richness declined more rapidly than prey richness with increasing isolation, which lead to decreasing predator:prey ratios. This result conflicts with prior demonstrations of invariant predator:prey ratios in freshwater communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号