首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent insight into the biochemical mechanism of protein translocation in Escherichia coli indicates that SecA ATPase is required both for the initial binding of preproteins to the inner membrane as well as subsequent translocation across this structure. SecA appears to promote these events by direct recognition of the preprotein or preprotein-SecB complex, binding to inner-membrane anionic phospholipids, insertion into the membrane biiayer and association with the preprotein translocator, SecY/SecE. ATP binding appears to control the affinity of SecA for the various components of the system and ATP hydrolysis promotes cycling between its different biochemical states. As a component likely to catalyse a rate-determining step in protein secretion, SecA synthesis is co-ordinated with the activity of the protein export pathway. This form of negative reguiation appears to rely on SecA protein binding to its mRNA and repressing translation if conditions of rapid protein secretion prevail within the cell. A precise biochemical scheme for SecA-dependent catalysis of protein export and the details of secA regulation appear to be close at hand. The evolutionary conservation of SecA protein among eubacteria as well as the general requirement for translocation ATPases in other protein secretion systems argues for a mechanistic commonality of all prokaryotic protein export pathways.  相似文献   

2.
Translocation of precursor proteins across the cytoplasmic membrane in bacteria is mediated by a multi-subunit protein complex termed translocase, which consists of the integral membrane heterotrimer SecYEG and the peripheral homodimeric ATPase SecA. Preproteins are bound by the cytosolic molecular chaperone SecB and targeted in a complex with SecA to the translocation site at the cytoplasmic membrane. This interaction with SecYEG allows the SecA/preprotein complex to insert into the membrane by binding of ATP to the high affinity nucleotide binding site of SecA. At that stage, presumably recognition and proofreading of the signal sequence occurs. Hydrolysis of ATP causes the release of the preprotein in the translocation channel and drives the withdrawal of SecA from the membrane-integrated state. Hydrolysis of ATP at the low-affinity nucleotide binding site of SecA converts the protein into a compact conformational state and releases it from the membrane. In the absence of the proton motive force, SecA is able to complete the translocation stepwise by multiple nucleotide modulated cycles. Received: 4 August 1995 / Accepted: 9 October 1995  相似文献   

3.
The M13 procoat protein serves as the paradigm for the Sec-independent membrane insertion pathway. This protein is inserted into the inner membrane of Escherichia coli with two hydrophobic regions and a central periplasmic loop region of 20 amino acid residues. Extension of the periplasmic loop region renders M13 procoat membrane insertion Sec-dependent. Loop regions with 118 or more residues required SecA and SecYEG and were efficiently translocated in vivo. Two mutants having loop regions of 80 and 100 residues, respectively, interacted with SecA but failed to activate the membrane translocation ATPase of SecA in vitro. Similarly, a procoat mutant with two additional glutamyl residues in the loop region showed binding to SecA but did not stimulate the ATPase. The three mutants were also defective for precursor-stimulated binding of SecA to the membrane surface. Remarkably, the mutant proteins act as competitive inhibitors of the Sec translocase. This suggests that the region to be translocated is sensed by SecA but the activation of the SecA translocation ATPase is only successful for substrates with a minimum length of the translocated region.  相似文献   

4.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

5.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

6.
Identification of the preprotein binding domain of SecA   总被引:1,自引:0,他引:1  
SecA, the preprotein translocase ATPase, has a helicase DEAD motor. To catalyze protein translocation, SecA possesses two additional flexible domains absent from other helicases. Here we demonstrate that one of these "specificity domains" is a preprotein binding domain (PBD). PBD is essential for viability and protein translocation. PBD mutations do not abrogate the basal enzymatic properties of SecA (nucleotide binding and hydrolysis), nor do they prevent SecA binding to the SecYEG protein conducting channel. However, SecA PBD mutants fail to load preproteins onto SecYEG, and their translocation ATPase activity does not become stimulated by preproteins. Bulb and Stem, the two sterically proximal PBD substructures, are physically separable and have distinct roles. Stem binds signal peptides, whereas the Bulb binds mature preprotein regions as short as 25 amino acids. Binding of signal or mature region peptides or full-length preproteins causes distinct conformational changes to PBD and to the DEAD motor. We propose that (a) PBD is a preprotein receptor and a physical bridge connecting bound preproteins to the DEAD motor, and (b) preproteins control the ATPase cycle via PBD.  相似文献   

7.
Most of the bacterial proteins that are active in extracytoplasmic locations are translocated through the inner membrane by the Sec translocase. Translocase comprises a membrane "pore" and the peripheral ATPase SecA. Where preproteins bind to SecA and how they activate translocation ATPase remains elusive. To address this central question we have purified to homogeneity the mature and preprotein parts of an exported protein (pCH5EE). pCH5EE satisfies a minimal size required for protein translocation and its membrane insertion is SecA-dependent. Purified pCH5EE and CH5EE can form physical complexes with SecA and can functionally suppress the elevated ATPase of a constitutively activated mutant. These properties render pCH5EE and CH5EE unique tools for the biochemical mapping of the preprotein binding site on SecA.  相似文献   

8.
In Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydrolysis by SecA are thought to drive the stepwise translocation of the preprotein across the membrane. To address how the length of a preprotein substrate affects the SecA-driven translocation process, we constructed derivatives of the precursor of the outer membrane protein A (proOmpA) with 2, 4, 6, and 8 in-tandem repeats of the periplasmic domain. With increasing polypeptide length, an increasing delay in the time before full-length translocation was observed, but the translocation rate expressed as amino acid translocation per minute remained constant. These data indicate that in the ATP-dependent reaction, SecA drives a constant rate of preprotein translocation consistent with a stepping mechanism of translocation.  相似文献   

9.
SecA is the ATP-dependent force generator in the Escherichia coli precursor protein translocation cascade, and is bound at the membrane surface to the integral membrane domain of the preprotein translocase. Preproteins are thought to be translocated in a stepwise manner by nucleotide-dependent cycles of SecA membrane insertion and de-insertion, or as large polypeptide segments by the protonmotive force (Deltap) in the absence of SecA. To determine the step size of a complete ATP- and SecA-dependent catalytic cycle, translocation intermediates of the preprotein proOmpA were generated at limiting SecA translocation ATPase activity. Distinct intermediates were formed, spaced by intervals of approximately 5 kDa. Inhibition of the SecA ATPase by azide trapped SecA in a membrane-inserted state and shifted the step size to 2-2.5 kDa. The latter corresponds to the translocation elicited by binding of non-hydrolysable ATP analogues to SecA, or by the re-binding of partially translocated polypeptide chains by SecA. Therefore, a complete catalytic cycle of the preprotein translocase permits the stepwise translocation of 5 kDa polypeptide segments by two consecutive events, i.e. approximately 2.5 kDa upon binding of the polypeptide by SecA, and another 2.5 kDa upon binding of ATP to SecA.  相似文献   

10.
In Escherichia coli , precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo , are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (Δ8proOmpA) bearing a non-functional signal sequence. Δ8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prlA4 strain. SecB reduces the translocation of Δ8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB–SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.  相似文献   

11.
Wang L  Miller A  Rusch SL  Kendall DA 《Biochemistry》2004,43(41):13185-13192
Protein translocation in Escherichia coli is initiated by the interaction of a preprotein with the membrane translocase composed of a motor protein, SecA ATPase, and a membrane-embedded channel, the SecYEG complex. The extent to which the signal peptide region of the preprotein plays a role in SecYEG interactions is unclear, in part because studies in this area typically employ the entire preprotein. Using a synthetic signal peptide harboring a photoaffinity label in its hydrophobic core, we examined this interaction with SecYEG in a detergent micellar environment. The signal peptide was found to specifically bind SecY in a saturable manner and at levels comparable to those that stimulate SecA ATPase activity. Chemical and proteolytic cleavage of cross-linked SecY and analysis of the signal peptide adducts indicate that the binding was primarily to regions of the protein containing transmembrane domains seven and two. The signal peptide-SecY interaction was affected by the presence of SecA and nucleotides in a manner consistent with the transfer of signal peptide to SecY upon nucleotide hydrolysis at SecA.  相似文献   

12.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

13.
F Duong  W Wickner 《The EMBO journal》1997,16(16):4871-4879
Escherichia coli preprotein translocase comprises a membrane-embedded hexameric complex of SecY, SecE, SecG, SecD, SecF and YajC (SecYEGDFyajC) and the peripheral ATPase SecA. The energy of ATP binding and hydrolysis promotes cycles of membrane insertion and deinsertion of SecA and catalyzes the movement of the preprotein across the membrane. The proton motive force (PMF), though not essential, greatly accelerates late stages of translocation. We now report that the SecDFyajC domain of translocase slows the movement of preprotein in transit against both reverse and forward translocation and exerts this control through stabilization of the inserted form of SecA. This mechanism allows the accumulation of specific translocation intermediates which can then complete translocation under the driving force of the PMF. These findings establish a functional relationship between SecA membrane insertion and preprotein translocation and show that SecDFyajC controls SecA membrane cycling to regulate the movement of the translocating preprotein.  相似文献   

14.
F Duong  W Wickner 《The EMBO journal》1997,16(10):2756-2768
Escherichia coli preprotein translocase contains a membrane-embedded trimeric complex of SecY, SecE and SecG (SecYEG) and the peripheral SecA protein. SecYE is the conserved functional 'core' of the SecYEG complex. Although sufficient to provide sites for high-affinity binding and membrane insertion of SecA, and for its activation as a preprotein-dependent ATPase, SecYE has only very low capacity to support translocation. The proteins encoded by the secD operon--SecD, SecF and YajC--also form an integral membrane heterotrimeric complex (SecDFyajC). Physical and functional studies show that these two trimeric complexes are associated to form SecYEGDFyajC, the hexameric integral membrane domain of the preprotein translocase 'holoenzyme'. Either SecG or SecDFyajC can support the translocation activity of SecYE by facilitating the ATP-driven cycle of SecA membrane insertion and de-insertion at different stages of the translocation reaction. Our findings show that each of the prokaryote-specific subunits (SecA, SecG and SecDFyajC) function together to promote preprotein movement at the SecYE core of the translocase.  相似文献   

15.
Preprotein translocation in Escherichia coli is mediated by translocase, a multimeric membrane protein complex with SecA as the peripheral ATPase and SecYEG as the translocation pore. Unique cysteines were introduced into transmembrane segment (TMS) 2 of SecY and TMS 3 of SecE to probe possible sites of interaction between the integral membrane subunits. The SecY and SecE single-Cys mutants were cloned individually and in pairs into a secYEG expression vector and functionally overexpressed. Oxidation of the single-Cys pairs revealed periodic contacts between SecY and SecE that are confined to a specific alpha-helical face of TMS 2 and 3, respectively. A Cys at the opposite alpha-helical face of TMS 3 of SecE was found to interact with a neighboring SecE molecule. Formation of this SecE dimer did not affect the high-affinity binding of SecA to SecYEG and ATP hydrolysis, but blocked preprotein translocation and thus uncouples the SecA ATPase activity from translocation. Conditions that prevent membrane deinsertion of SecA markedly stimulated the interhelical contact between the SecE molecules. The latter demonstrates a SecA-mediated modulation of the protein translocation channel that is sensed by SecE.  相似文献   

16.
SecYEG forms the protein-conducting channel of the Escherichia coli translocase. It binds the peripheral ATPase SecA that drives the preprotein translocation reaction. PrlA4 is a double mutant of SecY that enables the translocation of preproteins with a defective or even missing signal sequence. The effect of the individual mutations, F286Y and I408N, was studied with SecYEG proteoliposomes. SecY(I408N) is responsible for the increased translocation of preproteins with a defective and normal signal sequence, and exhibits a stronger prl phenotype than PrlA4. This activity correlates with an elevated SecA-translocation ATPase and SecA binding affinity. SecY(F286Y) supports only a low SecA binding affinity, preprotein translocation and SecA translocation ATPase activity. These results suggest that the second site F286Y mutation reduces the strength of the I408N mutation of PrlA4 by lowering the SecA binding affinity.  相似文献   

17.
Terminal residues in SecA, the dimeric ATPase motor of bacterial preprotein translocase, were proposed to be required for function and dimerization. To test this, we generated truncation mutants of the 901aa long SecA of Escherichia coli. We now show that deletions of carboxy-terminal domain (CTD), the extreme CTD of 70 residues, or of the N-terminal nonapeptide or of both, do not compromise protein translocation or viability. Deletion of additional C-terminal residues upstream of CTD compromised function. Functional truncation mutants like SecA9-861 are dimeric, conformationally similar to SecA, fully competent for nucleotide and SecYEG binding and for ATP catalysis. Our data demonstrate that extreme terminal SecA residues are not essential for SecA catalysis and dimerization.  相似文献   

18.
Ding H  Mukerji I  Oliver D 《Biochemistry》2001,40(6):1835-1843
SecA ATPase is an essential component of the Sec-dependent protein translocation machinery. Upon interaction with the plasma membrane containing SecYE, preprotein, and ATP, SecA undergoes cycles of membrane insertion and retraction resulting in the translocation of segments of the preprotein to the trans side of the membrane. To study the structural basis of SecA function, we employed fluorescence spectroscopy along with collisional quenchers with a set of SecA proteins containing single tryptophan substitutions. Our data show that among the seven naturally occurring tryptophan residues of Escherichia coli SecA, only the three tryptophan residues contained within the C-domain contributed significantly to the fluorescence signal, and they occupied distinct local environments in solution: Trp723 and Trp775 were found to be relatively solvent accessible and inaccessible, respectively, while Trp701 displayed an intermediate level of solvent exposure. Exposure to increased temperature or interaction with model membranes or signal peptide elicited a similar conformational response from SecA based upon the fluorescence signals of the SecA-W775F and SecA-W723F mutant proteins. Specifically, Trp775 became more solvent exposed, while Trp723 became less solvent accessible under these conditions, indicating similarities in the overall conformational change of the C-domain promoted by temperature or translocation ligands. Only Trp701 did not respond in parallel to the different conditions, since its solvent accessibility changed only in the presence of signal peptide. These results provide the first detailed structural information about the C-domain of SecA and its response to translocation ligands, and they provide insight into the conformational changes within SecA that drive protein translocation.  相似文献   

19.
Covalently dimerized SecA is functional in protein translocation   总被引:1,自引:0,他引:1  
The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.  相似文献   

20.
Preprotein translocase catalyzes membrane protein integration as well as complete translocation. Membrane proteins must interrupt their translocation and be laterally released from the translocase into the lipid bilayer. We have analyzed the translocation arrest and lateral release activities of Escherichia coli preprotein translocase with an in vitro reaction and the preprotein proOmpA carrying a synthetic stop-transfer sequence. Membrane protein integration is catalytic, occurs with kinetics similar to those of proOmpA itself and only requires the functions of SecYEG and SecA. Though a strongly hydrophobic segment will direct the protein to leave the translocase and enter the lipid bilayer, a protein with a segment of intermediate hydrophobicity partitions equally between the translocated and membrane-integrated states. Analysis of the effects of PMF, varied ATP concentrations or synthetic translocation arrest show that the stop-translocation efficiency of a mildly hydrophobic segment depends on the translocation kinetics. In contrast, the lateral partitioning from translocase to lipids depends solely on temperature and does not require SecA ATP hydrolysis or SecA membrane cycling. Thus translocation arrest is controlled by the SecYEG translocase activity while lateral release and membrane integration are directed by the hydrophobicity of the segment itself. Our results suggest that a greater hydrophobicity is required for efficient translocation arrest than for lateral release into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号