首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tuna ferricytochrome c has been used to demonstrate the potential for completely assigning 1H and 13C strongly hyperfine-shifted resonances in metalloprotein paramagnetic centers. This was done by implementation of standard two-dimensional NMR experiments adapted to take advantage of the enhanced relaxation rates of strongly hyperfine-shifted nuclei. The results show that complete proton assignments of the heme and axial ligands can be achieved, and that assignments of several strongly shifted protons from amino acids located close to the heme can also be made. Virtually all proton-bearing heme 13C resonances have been located, and additional 13C resonances from heme vicinity amino acids are also identified. These results represent an improvement over previous proton resonance assignment efforts that were predicated on the knowledge of specific assignments in the diamagnetic protein and relied on magnetization transfer experiments in heterogeneous solutions composed of mixtures of diamagnetic ferrocytochrome c and paramagnetic ferricytochrome c. Even with that more complicated procedure, complete heme proton assignments for ferricytochrome c have never been demonstrated by a single laboratory. The results presented here were achieved using a more generally applicable strategy with a solution of the uniformly oxidized protein, thereby eliminating the requirement of fast electron self-exchange, which is a condition that is frequently not met.  相似文献   

2.
Two types of homonuclear proton COSY experiments are shown to be useful in making resonance assignments in cyanide-ligated cytochrome c peroxidase, a 34 kDa paramagnetic heme protein. Both magnitude COSY and phase-sensitive COSY experiments provide spectra useful for making proton assignments to resonances of strongly relaxed hyperfine-shifted protons. This initial investigation demonstrates that COSY experiments combined with NOESY experiments are feasible for hyperfine-shifted protons of paramagnetic proteins larger than metmyoglobins and ferricytochromes c, for which the nuclear spin-lattice relaxation times are in the range 70-300 ms. Taken together, COSY and NOESY experiments, although not yet widely applied to paramagnetic metalloproteins, provide a reliable protocol for accurately assigning hyperfine-shifted resonances that are part of a metalloenzyme's active site. Specific examples of expected proton homonuclear COSY connectivities that were not observed in these experiments are presented, and utilization of COSY with respect to the proton resonance line widths and apparent nuclear relaxation times is discussed. The COSY experiments presented here provide valuable verification of previously proposed hyperfine resonance assignments for cyanide-ligated cytochrome c peroxidase, which were made by using NOESY experiments alone, and in several instances expand these assignments to additional protons in particular amino acid spin systems.  相似文献   

3.
4.
The 1H nuclear magnetic resonance spectrum of tuna ferrocytochrome c has been studied and the resonances of all 49 amino acid methyl groups have been assigned to specific absorption lines. In comparison with resonance assignments in the ferricytochrome c spectrum, the secondary shifts of resonances of ferrocytochrome c are smaller and the identification of characteristic spin-systems from comparison of spectra from homologous proteins more difficult. For this reason, two-dimensional nuclear magnetic resonance exchange correlated spectroscopy has been used to correlate the assigned resonances of tuna ferricytochrome c with previously unassigned resonances of tuna ferrocytochrome c.  相似文献   

5.
The aromatic regions of the nuclear magnetic resonance spectra of horse ferricytochrome c and horse ferrocytochrome c are described. Resonance assignments have been made using NMR double-resonance techniques, spectral comparison of related proteins, the perturbing effects of extrinsic probes, and from knowledge of the X-ray structure of cytochrome c. 33 resonances arising from 39 aroumatic protons of ferrocytochrome c, and 18 resonances arising from 27 aromatic protons of ferricytochrome c have been assigned.  相似文献   

6.
G M Smith 《Biochemistry》1979,18(8):1628-1634
Rhodospirillum rubrum cytochrome c2 was studied by proton nuclear magnetic resonance at 220 MHz. Assignments were made to the resonances of heme c by double-resonance techniques and by temperature-dependence studies. The aromatic resonances of Trp-62 and Tyr-70 of ferrocytochrome c2 were identified by spin-decoupling experiments. The resonances of the Met-91 methyl group of the ferri- and ferrocytochromes were assigned by saturation-transfer experiments. The assignments are compared to those made for cytochromes c. A pH titration showed that the methionine methyl resonance of ferricytochrome c2 shifted with a pK of 6.25 and disappeared above pH 9. No histidine CH resonances that titrated normally over the neutral pH range were observed in the spectrum of either oxidation state of the protein. The possible origins of the ionizations at pH 6.25 and 9 are discussed.  相似文献   

7.
Proton resonance assignments of horse ferricytochrome c   总被引:7,自引:0,他引:7  
Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR) was used to obtain extensive resonance assignments in the 1H NMR spectrum of horse ferricytochrome c. Assignments were made for the main-chain and C beta protons of 102 residues (all except Pro-44 and Gly-84) and the majority of side-chain protons. As starting points for the assignment of the oxidized protein, a limited set of protons was initially assigned by use of 2D NMR magnetization transfer methods to correlate resonances in the oxidized form with assigned resonances in the reduced form [Wand, A. J., Di Stefano, D. L., Feng, Y., Roder, H., & Englander, S. W. (1989) Biochemistry (preceding paper in this issue)]. Given the complexity of the spectrum due to the size of this protein (104 residues) and its paramagnetic center, the initial search for side-chain spin systems in J-correlated spectra was successful only for the simplest side chains, but the majority of NH-C alpha H-C beta H subspin systems (NAB sets) could be identified at this stage. The subsequent search for sequential NOE connectivities focused on NAB sets, with use of previously assigned residues to place NOE-connected segments within the amino acid sequence. Selective proton labeling of either the slowly or the rapidly exchanging amide sites was used to simplify the spectra, and systematic work at two temperatures was used to resolve ambiguities in the 2D NMR spectra. These approaches, together with the use of magnetization transfer methods to correlate reduced and oxidized cytochrome c spectra, provide multiple cross-checks to verify assignments.  相似文献   

8.
H Santos  D L Turner 《FEBS letters》1987,226(1):179-185
1H NMR saturation transfer and nuclear Overhauser effect (NOE) measurements have been used together with two-dimensional spectra to complete the assignment of the well resolved hyperfine shifted resonances in the spectrum of horse ferricytochrome c and obtain their shifts in the reduced protein. New assignments include the beta-CH2 protons of Met-80, both ring protons of His-18, and the alpha-CH2 of Gly-29 and delta-CH2 of Pro-30, which resonate surprisingly far upfield despite the absence of any Fermi contact contribution to the shift.  相似文献   

9.
The solution 500-MHz 1H NMR spectral parameters for ferricytochrome b562, a soluble 12-kDa electron carrier from Escherichia coli with axial His/Met coordination, are shown to be strongly influenced by protein concentration and ionic strength at low pH and 25 degrees C in a manner consistent with significant aggregation at low ionic strength. At high ionic strength a well-resolved 1H NMR spectrum reveals over 40 hyperfine-shifted resonances which arise from two isomeric species in the ratio 2:1. 2D COSY and NOESY maps at 25 degrees C for the hyperfine-shifted resonances allow the assignment of a number of axial His resonances and all heme peripheral substituent peaks. The resulting asymmetric heme contact shift patterns, together with the halving of the number of lines when reconstituting with 2-fold symmetric hemin, demonstrate the molecular basis of the solution heterogeneity to be heme orientational disorder. The strongly upfield-shifted axial Met-7 resonances, characteristic of low-spin ferricytochromes c with His/Met ligation, appear upfield only at very low temperatures. At elevated temperatures, all resonances, in particular those of the axial Met, move strongly downfield. Detailed analysis of the deviation from Curie behavior for different functional groups demonstrates the presence of a low spin in equilibrium high spin equilibrium with an intact His-Fe-Met coordination. The weaker axial field in ferricytochrome b562, relative to the purely low-spin ferricytochromes c, is attributed to a perturbed iron-Met bond. The contact shifts for a coordinated Met in the high-spin state are estimated. A link between equatorial hemin and axial ligand interactions is indicated by a differential population of the high-spin form for the two hemin orientations.  相似文献   

10.
1H Nuclear magnetic resonance assignments are given for the NH and C alpha H protons of two alpha-helical segments of tuna ferricytochrome c. The assignments were obtained using two-dimensional nuclear magnetic resonance sequential assignment procedures and illustrate the applicability of these methods to medium-sized proteins. By comparing nuclear Overhauser intensities between the NH and C alpha H protons the precise structures of the two helical segments are compared and their deviations from ideality are discussed.  相似文献   

11.
Nuclear magnetic resonance spectroscopy is employed to characterize unfolding intermediates and the denatured state of horse ferricytochrome c in guanidine hydrochloride. Unfolded and partially unfolded species with non-native heme ligation are detected by analysis of hyperfine-shifted (1)H resonances. Two equilibrium unfolding intermediates with His-Lys heme axial ligation are detected, as are two unfolded species with bis-His heme ligation. These results are contrasted with previous results on horse ferricytochrome c denaturation by urea, for which only one unfolding intermediate and one unfolded species were detected by NMR spectroscopy. Urea and guanidine hydrochloride are often used interchangeably in protein denaturation studies, but these results and those of others indicate that unfolded and intermediate states in these two denaturants may have substantially different properties. Implications of these results for folding studies and the biological function of mitochondrial cytochromes c are discussed.  相似文献   

12.
R Timkovich  M S Cork 《Biochemistry》1982,21(21):5119-5123
Proton nuclear magnetic resonance spectra of ferricytochrome cd1 from the denitrifying bacterium Pseudomonas aeruginosa have been obtained. The normal 0-10-ppm chemical shift range shows many overlapping and nonresolvable peaks, as would be expected for a dimeric protein of molecular weight approximately 120,000. In the downfield region between 10 and 50 ppm, and in the upfield region between 0 and -20 ppm, resolvable resonances corresponding to a small number of protons are observed. The temperature and pH behavior of these resonances have been examined. For some of the resolved resonances, the pH behavior of chemical shifts and intensities indicates that the oxidized form of the enzyme undergoes a structural transition with a pK of 5.8 +/- 0.3. On the basis of several lines of evidence, some assignments are proposed in which resolvable resonances are assigned as originating from either the heme c or the heme d1 prosthetic groups of the enzyme.  相似文献   

13.
Ferricytochromes c from three species (horse, tuna, yeast) display sensitivity to variations in solution ionic strength or pH that is manifested in significant changes in the proton NMR spectra of these proteins. Irradiation of the heme 3-CH3 resonances in the proton NMR spectra of tuna, horse and yeast iso-1 ferricytochromes c is shown to give NOE connectivities to the phenyl ring protons of Phe82 as well as to the beta-CH2 protons of this residue. This method was used to probe selectively the Phe82 spin systems of the three cytochromes c under a variety of solution conditions. This phenylalanine residue has previously been shown to be invariant in all mitochondrial cytochromes c, located near the exposed heme edge in proximity to the heme 3-CH3, and may function as a mediator in electron transfer reactions [Louie, G. V., Pielak, G. J., Smith, M. & Brayer, G. D. (1988) Biochemistry 27, 7870-7876]. Ferricytochromes c from all three species undergo a small but specific structural rearrangement in the environment around the heme 3-CH3 group upon changing the solution conditions from low to high ionic strength. This structural change involves a decrease in the distance between the Phe82 beta-CH2 group and the heme 3-CH3 substituent. In addition, studies of the effect of pH on the 1H-NMR spectrum of yeast iso-1 ferricytochrome c show that the heme 3-CH3 proton resonance exhibits a pH-dependent shift with an apparent pK in the range of 6.0-7.0. The chemical shift change of the yeast iso-1 ferricytochrome c heme 3-CH3 resonance is not accompanied by an increase in the linewidth as previously described for horse ferricytochrome c [Burns, P. D. & La Mar, G. N. (1981) J. Biol. Chem. 256, 4934-4939]. These spectral changes are interpreted as arising from an ionization of His33 near the C-terminus. In general, the larger spectral changes observed for the resonances in the vicinity of the heme 3-CH3 group in yeast iso-1 ferricytochrome c with changes in solution conditions, relative to the tuna and horse proteins, suggest that the region around Phe82 is more open and that movement of the Phe82 residue is less constrained in yeast ferricytochrome c. Finally, it is demonstrated here that both the heme 8-CH3 and the 7 alpha-CH resonances of yeast ferricytochrome c titrate with p2H and exhibit apparent pK values of approximately 7.0. The titrating group responsible for these spectral changes is proposed to be His39.  相似文献   

14.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

15.
R Timkovich  M S Cork  P V Taylor 《Biochemistry》1984,23(15):3526-3533
The 1H NMR spectra of ferri- and ferro-cytochrome c-550 from Paracoccus denitrificans (ATCC 13543) have been investigated at 300 MHz. The ferri-cytochrome c-550 shows hyperfine-shifted heme methyl resonances at 29.90, 29.10, 16.70, and 12.95 ppm and a ligand methionyl methyl resonance at -15.80 ppm (pH 8 and 23 degrees C). Four pH-linked structural transitions were detected in spectra taken as a function of pH. The transitions have been interpreted as loss of the histidine heme ligand (pK less than or equal to 3), ionization of a buried heme propionate (pK = 6.3 +/- 0.2), displacement of the methionine heme ligand by a lysyl amino group (pK congruent to 10.5), and loss of the lysyl ligand (pK greater than or equal to 11.3). The temperature behavior of hyperfine-shifted resonances was determined. Two heme methyl resonances (at 16.70 and 12.95 ppm) showed downfield hyperfine shifts with increasing temperature. The cyanoferricytochrome had methyl resonances at 23.3, 20.1, and 19.4 ppm. NMR spectroscopy did not detect the formation of a complex with azide. The second-order rate constant for electron transfer between ferric and ferrous forms was determined to be 1.6 X 10(4) M-1 s-1. Heme proton resonances were assigned in both oxidation states by cross-saturation and nuclear Overhauser enhancement experiments. Spin-coupling patterns in the aromatic region of the ferro-cytochrome spectrum were investigated.  相似文献   

16.
Proton NMR studies of Saccharomyces cerevisiae (bakers yeast) isozyme-1 monomer and dimer ferricytochrome c have been carried out. The dimer is formed via a disulfide bridge between the Cys-102 residues of monomer proteins. Nuclear Overhauser effect (NOE) experiments have led to resonance assignments for many of the heme and axial ligand (Met-80; His-18) protons in both protein forms. Resonances of the following amino acids have also been assigned in both forms: Phe-10; Pro-30; Phe-82; Trp-59; Leu-68. The proton NOE connectivity patterns of the monomer of yeast isozyme-1 ferricytochrome c are similar to those of horse, tuna, and yeast isozyme-2 ferricytochromes c, even though the observed hyperfine resonance spectra are significantly different for the various cytochromes. The pattern of dimer proton hyperfine resonances is distinct from the isozyme-1 monomer pattern, which indicates that the formation of a disulfide bridge via Cys-102 is detected at the heme site, approximately 10 A distant. It appears that a specific structural change is induced upon dimerization, which, in turn, causes specific perturbations in the vicinity of the heme. However, the general features of the NOE connectivity pattern in the dimer are the same as for the monomer indicating that dimerization does not result in drastic structural disruption. Furthermore, the 1H NMR spectrum of the dimer can be mimicked by the monomer form that results when the -SH group of Cys-102 is chemically modified with certain types of bulky, or hydrophilic reagents (i.e. 5,5'-dithiobis[2-nitrobenzoate], indicating that perturbations of the yeast isozyme-1 ferricytochrome c proton resonance spectrum observed upon dimerization are essentially due to changes in intramolecular, rather than intermolecular, interactions. These results suggest that a possible regulatory site for yeast isozyme-1 cytochrome c exists at position 102, which could conceivably have a physiological role in altering the conformation of the molecule.  相似文献   

17.
Recently, we found that ferricytochrome c (ferricyt c) undergoes significant structural changes in mixed aqueous-nonaqueous media, resulting in the formation of a mixture of alkaline-like species. The equilibrium composition of this mixture of species is dependent on the dielectric constant of the mixed solvent medium. One-dimensional (1D) and two-dimensional (2D) (1)H nuclear magnetic resonance (NMR) methods have now been used to study these alkaline-like forms in 30% acetonitrile-water solution. A native-like (M80-ligated) III* form, two lysine-ligated forms (IVa* and IVb*), and a hydroxide-ligated form (V*) were observed. Heme proton resonance assignments for these forms were accomplished using 1D (1)H NMR and 2D nuclear Overhauser effect spectroscopy methods at 20 degrees C and 35 degrees C. The chemical exchange between the alkaline forms in 30% acetonitrile solution facilitated heme proton resonance assignments. Based on examination of the heme proton chemical shifts and several highly conserved amino acid residues, the electronic structure, secondary structure, and hydrogen bond network in the vicinity of the heme in the III* form were found to be intact. Similarly, the heme electronic structure of the IVa* form was found to be comparable to that of the IVa form. Differences in the order of the heme methyl resonances in the IVb* form, however, suggest that the heme active site in this form is somewhat different from that observed in aqueous alkaline solution. In addition, resonance assignments for the 8- and 3-methyl heme protons were made for the hydroxide-ligated V* form for the first time. The observation of chemical exchange peaks between all species except IVb* and IVa* or V* was used to propose an exchange pathway between the different forms of ferricyt c in 30% acetonitrile solution. This pathway may be biologically significant because ferricyt c, which resides in the intermembrane space of mitochondria, is exposed to medium of relatively low dielectric constant when it interacts with the mitochondrial membrane.  相似文献   

18.
Proton nuclear magnetic resonance spectra are reported for cytochrome cd1 from Pseudomonas aeruginosa (ATCC 19429) in several forms including complexes of the ferricytochrome with cyanide, azide, and fluoride, a quasi-apo form in which the noncovalently associated heme d1 has been removed but the covalently bound heme c is retained, and the reduced state of both native and the quasi-apo forms. Comparisons are made to the previously reported spectrum of ferricytochrome cd1. The following points are made. The spectra of the azide and fluoride complexes and the ferric quasi-apo form show perturbation of resonances assignable to the site of heme d1, and leave relatively unperturbed resonances assignable to the site of heme c. The heme d1 associated resonances are at 46.0, 35.4, 23.3, 17.5, -2.9, and 16 ppm, and the heme c associated resonances are at 42.0, 33.7, 15.0, 13.9, -7.5, -14, and -33 ppm in native ferricytochrome cd1. The similarity of the hyperfine resonances of the ferric quasi-apo from to the heme c resonances of intact ferricytochrome cd1 is evidence that removal of heme d1 leaves the heme c binding site relatively unaltered. Linewidths and relaxation times suggest that the relaxation times of the unpaired electron spins of the ferric hemes c and d1 are on the same order of magnitude. Although it is paramagnetic, ferrocytochrome cd1 does not demonstrate an experimentally detectable hyperfine shifted spectrum under present conditions. Possible reasons for this are discussed. The presence of a narrow resonance at -2.8 ppm in both ferrocytochrome cd1 and the reduced state of the quasi-apo form suggests that methionine may be a ligand to heme c.  相似文献   

19.
J D Satterlee  J E Erman 《Biochemistry》1991,30(18):4398-4405
Proton NMR assignments of the heme pocket and catalytically relevant amino acid protons have been accomplished for cyanide-ligated yeast cytochrome c peroxidase. This form of the protein, while not enzymatically active itself, is the best model available (that displays a resolvable proton NMR spectrum) for the six-coordinate low-spin active intermediates, compounds I and II. The assignments were made with a combination of one- and two-dimensional nuclear Overhauser effect methods and demonstrate the utility of NOESY experiments for paramagnetic proteins of relatively large size (Mr 34,000). Assignments of both isotope exchangeable and nonexchangeable proton resonances were obtained by using enzyme preparations in both 90% H2O/10% D2O and, separately, in 99.9% D2O solvent systems. Complete resonance assignments have been achieved for the proximal histidine, His-175, and His-52, which is a member of the catalytic triad on the distal side of the heme. In addition, partial assignments are reported for Trp-51 and Arg-48, catalytically important residues, both on the distal side. Aside from His-175, partial assignments for amino acids on the proximal side of the heme are proposed for the alanines at primary sequence positions 174 and 176 and for Thr-180 and Leu-232.  相似文献   

20.
A nuclear Overhauser effect, NOE, study of solubilized native bovine ferricytochrome b5 has provided the complete assignment of the heme resonances as well as those of the majority of the amino acid side-chains making contact with the prosthetic group. The resonances which could not be identified are those from positions very close to the iron (less than 5 A) for which paramagnetic relaxation is sufficiently strong to significantly decrease the NOEs. The observed 1H-1H dipolar contacts generally confirm a solution structure unchanged from that described in single crystals, except for the detailed orientation of the heme side-chains. The 2-vinyl group is found in both the cis and trans in-plane orientation as opposed to exclusively cis in the crystal, and the 7-propionate group is rotated by 30 degrees in solution towards the 6-propionate group. Identification of resonances for the individual axial histidine residues indicates non-equivalent interaction with the heme iron, and the patterns of meso-H, pyrrole substituent and amino acid dipolar shifts allow the location of the principal magnetic axes in the protein coordinate system. This identifies His-39 as the dominant influence in determining the electronic ground state that orients the molecular orbital for facile electron transfer via the exposed heme edge. The complete two-dimensional NOESY map for ferricytochrome b5 is presented that yields all the cross peaks expected on the basis of the one-dimensional NOE studies, and indicates that such two-dimensional methods should have profitable extension to strongly hyperfine-shifted resonances in paramagnetic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号