首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhizobium leguminosarum bv. phaseoli CFN42 contains six plasmids (pa to pf), and pd has been shown to be the symbiotic plasmid. To determine the participation of the other plasmids in cellular functions, we used a positive selection scheme to isolate derivatives cured of each plasmid. These were obtained for all except one (pe), of which only deleted derivatives were recovered. In regard to symbiosis, we found that in addition to pd, pb is also indispensable for nodulation, partly owing to the presence of genes involved in lipopolysaccharide synthesis. The positive contribution of pb, pc, pe, and pf to the symbiotic capacity of the strain was revealed in competition experiments. The strains that were cured (or deleted for pe) were significantly less competitive than the wild type. Analysis of the growth capacity of the cured strains showed the participation of the plasmids in free-living conditions: the pf- strain was unable to grow on minimal medium, while strains cured of any other plasmid had significantly reduced growth capacity in this medium. Even on rich medium, strains lacking pb or pc or deleted for pe had a diminished growth rate compared with the wild type. Complementation of the cured strains with the corresponding wild-type plasmid restored their original phenotypes, thus confirming that the effects seen were due only to loss of plasmids. The results indicate global participation of the Rhizobium genome in symbiotic and free-living functions.  相似文献   

2.
Seven Tn5 induced mutants unable to use glutamate as sole carbon and nitrogen source were isolated from the effective Rhizobium leguminosarum bv. phaseoli strain P121-R. As indicated by restriction and hybridisation analysis, all the mutants arose from a single Tn5 insertion in the chromosome. The 14C-glutamate uptake rate of the mutants was 76 to 88% lower than that of strain P121-R. Inoculation of Phaseolus vulgaris cv. Labrador with these mutants significantly decreased shoot dry matter yield and the total nitrogen content respectively, as compared to inoculation with the parental strain P121-R. All the mutants formed nodules, however they were smaller, white to greenish and approximately 30% less numerous than those formed by strain P121-R. These observations suggest that glutamate transport and catabolism in R. leguminosarum bv. phaseoli P121-R may play an important role in the establishment of an effective symbiosis in field bean. None of the mutants isolated was an auxotroph. All mutants were unable to grow on aspartate suggesting that glutamate and aspartate, probably have the same transporter as indicated in Rhizobium meliloti and in Bacillus subtilis. All mutants readily used glutamine, proline, arginine as sole carbon and nitrogen source, but grew more slowly than the wild type strain. On the other hand, all the mutants were impaired in growth on histidine and -aminobutyrate as sole carbon and nitrogen source. As the catabolism of these amino acids occurs predominantly through glutamate, our results indicate that mutants are also impaired in their ability to use histidine and -aminobutyrate as a nitrogen source. Our results also suggest that other amino acids catabolized through the glutamate pathways may be an additional important carbon source for bacteroids in nodules.  相似文献   

3.
High-frequency genomic rearrangements affecting the plasmids of Rhizobium leguminosarum bv. phaseoli CFN42 were analyzed. This strain contains six large plasmids ranging in size from 200 to 600 kb. In the absence of any selective pressure, we found 11 strains from 320 analyzed colonies that presented different kinds of plasmid-borne rearrangements, including sequence amplification, deletion, cointegration, and loss of plasmids. These data support the concept that the R. leguminosarum bv. phaseoli genome is a dynamic structure and imply that strains are mixtures of similar but not identical cells.  相似文献   

4.
Soil acidity constraints grain legume production in tropical soils, both limiting Rhizobium survival and reducing nodulation. Strains of rhizobia with greater tolerance to hydrogen-ion concentration have been identified, but the basis for strain differences in pH tolerance has yet to be determined. In this study, strains of Rhizobium leguminosarum by phaseoli which differed in their tolerance to acidity were exposed to acid pH, then cell levels of potassium and calcium determined, and specific ‘acid-shock’ proteins identified. Lowering the external pH to 4.6–4.7 resulted in an immediate efflux of calcium from the cell of both acid tolerant and sensitive bean strains. Change in cell potassium levels on exposure to acidity varied with the strain. Strain UMR 1899 and an acid-sensitive mutant derived from it maintained high cytoplasmic potassium at acid pH, whereas an acid-sensitive strain UMR 1632 underwent a marked decline in cell potassium at pH 4.6. Exposure of these strains to pH 4.5 in the presence of [35S]-labeled methionine enhanced production of a number of proteins, while synthesis of other proteins at this pH was significantly reduced. Differences in banding pattern were also evident between UMR1899 and the Tn5-induced pH-sensitive mutant UMR5005 derived from it, and between cells grown in the presence and absence of calcium and phosphorus.  相似文献   

5.
In Rhizobium-legume symbiosis, the plant host controls and optimizes the nodulation process by autoregulation. Tn5 mutants of Rhizobium leguminosarum bv. phaseoli TAL 182 which are impaired at various stages of symbiotic development, were used to examine autoregulation in the common bean (Phaseolus vulgaris L.). Class I mutants were nonnodulating, class II mutants induced small, distinct swellings on the roots, and a class III mutant formed pink, bacterium-containing, but ineffective nodules. A purine mutant (Ade-) was nonnodulating, while a pyrimidine mutant (Ura-) formed small swellings on the roots. Amino acid mutants (Leu-, Phe-, and Cys-) formed mostly empty white nodules. Each of the mutants was used as a primary inoculant on one side of a split-root system to assess its ability to suppress secondary nodulation by the wild type on the other side. All mutants with defects in nodulation ability, regardless of the particular stage of blockage, failed to induce a suppression response from the host. Only the nodulation-competent, bacterium-containing, but ineffective class III mutant induced a suppression response similar to that induced by the wild type. Suppression was correlated with the ability of the microsymbiont to proliferate inside the nodules but not with the ability to initiate nodule formation or the ability to fix nitrogen. Thus, the presence of bacteria inside the nodules may be required for the induction of nodulation suppression in the common bean.  相似文献   

6.
Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid.   总被引:5,自引:8,他引:5  
Different structural changes of the Sym plasmid were found in a Rhizobium phaseoli strain that loses its symbiotic phenotype at a high frequency. These rearrangements affected both nif genes and Tn5 mob insertions in the plasmid, and in some cases they modified the expression of the bacterium's nodulation ability. One of the rearrangements was more frequent in heat-treated cells, but was also found under standard culture conditions; other structural changes appeared to be related to the conjugal transfer of the plasmid.  相似文献   

7.
Six effective Rhizobium leguminosarum bv. phaseoli strains were examined for nodulation competitiveness on common bean (Phaseolus vulgaris L.), using all possible two-strain combinations of inoculum. Nodule occupancy was determined with strain-specific fluorescent antibodies. The strains were divided into three groups according to their overall competitive abilities on pole bean cv. Kentucky Wonder and bush bean cv. Bountiful. Strains TAL 182 and TAL 1472 were highly competitive (greater than 70% nodule occupancy); strains KIM-5, Viking 1, and CIAT 899 were moderately competitive (approximately 50% nodule occupancy); and strain CIAT 632 was poorly competitive (less than 5% nodule occupancy). The competitiveness of the six strains was similar on the two host cultivars. The proportion of competing strains in the inoculum influenced the nodule occupancy of the highly competitive and moderately competitive strains, but not that of the poorly competitive strain. Two outstanding strains (TAL 182 and TAL 1472) were identified as ideal model strains for molecular and genetic studies on nodulation competitiveness.  相似文献   

8.
9.
A ciprofloxacin resistant mutant (Cf(R)) of Rhizobium leguminossarum bv phaseoli USDA 2695 which nodulates common bean plants (Phaseolus vulgaris L) was isolated after nitrous acid mutagenesis. Another mutant resistant to nalidixic acid (Nal(R)) was isolated spontaneously. Both mutants showed thermotolerance as evident by their ability to grow at elevated (40 degrees C) temperature, although the wild type (USDA 2695) failed to grow at this temperature. Transformation and plasmid curing experiments suggested the gene(s) controlling thermotolerance (TrR) and resistance to nalidixic acid or ciprofloxacin were located on the main chromosome and not on the plasmids. High frequency of co-transfer of TrR-Cr(R) and Tr(R)-Nal(R) during transformation experiments indicated a close association of these gene(s). Role of DNA gyrase and supercoiling in these thermotolerant mutants has been discussed.  相似文献   

10.
The symbiotic plasmid (pSym) of Rhizobium leguminosarum bv. trifolii 4S5, which carries Tn5-mob, was successfully transferred into Agrobacterium tumefaciens A136 by using a conjugation method. The resulting transconjugants induced the development of ineffective nitrogen-fixing nodules on the roots of white clover seedlings. Depending on the manner in which the pSym was retained, the transconjugants were divided into two groups of strains, Afp and Afcs. pSym was retained as a plasmid in the Afp strains but was integrated into the int gene encoding a phage-related integrase on the linear chromosome of A. tumefaciens A136 in strain Afcs1 (one of the Afcs strains) to form a symbiosis island. Conjugation was performed between strain Afcs1 and R. leguminosarum bv. trifolii H1 (a pSym-cured derivative of wild-type strain 4S), and the Rhizobium H1tr strains were screened as transconjugants. Eighteen of the H1tr strains induced effective nitrogen-fixing nodules on the roots of the host plants. pSym was transferred into all of the transconjugants, except for strain H1tr1, at the same size as pSym of strain 4S5. In strain H1tr1, pSym was integrated into the chromosome as a symbiosis island. These data suggest that pSym can exist among Rhizobium and Agrobacterium strains both as a plasmid and as a symbiosis island with transposon mediation.  相似文献   

11.
A rearrangement between the symbiotic plasmid (pRleVF39d) and a nonsymbiotic plasmid (pRleVF39b) in Rhizobium leguminosarum bv. viciae VF39 was observed. The rearranged derivative showed the same plasmid profile as its parent strain, but hybridization to nod, fix, and nif genes indicated that most of the symbiotic genes were now present on a plasmid corresponding in size to pRleVF39b instead of pRleVF39d. On the other hand, some DNA fragments originating from pRleVF39b now hybridized to the plasmid band at the position of pRleVF39d. These results suggest that a reciprocal but unequal DNA exchange between the two plasmids had occurred.  相似文献   

12.
This study examines the speed of nodulation of 20 strains of Rhizobium leguminosarum bv phaseoli, and relates this trait to the competitive performance of these strains with Phaseolus vulgaris L. At 25/20°C day/night temperature, and with 107 cells applied per growth pouch, there was a strong positive correlation between the speed of nodulation and the competitiveness of strains with the nod + fix reference strain UMR 1116. Strains UMR 1084, 1125, 1165, 1173 and 1384 combined good competitive performance with extensive nodulation in the uppermost root regions. When inoculant levels in the RTM studies were reduced to 103 cells per pouch no correlation between the apparent competitiveness of strains and their speed in nodulation was evident, presumably because cells had to undergo multiplication before infection. Nodulation was also delayed when growth temperatures were raised to 31/26°C, but a correlation was still evident between competitive performance and nodulation in the region 0.1 to 5.0 mm below the RTM at the time of inoculation. From these results speed of nodulation can be used to estimate the competitive potential of Rhizobium strains, but only under carefully regulated conditions. The effects of inoculation level and temperature on the relationship between speed of nodulation and strain competitiveness could explain the inconsistent results obtained in earlier studies on this topic.Journal paper No. 16962, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

13.
Analysis of the regulation of plasmid transfer genes on the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae has revealed a novel regulatory relay that is specifically poised to detect an N-acyl-homoserine lactone (AHL) made by different cells (potential recipients of pRL1JI). Adjacent to the traI-trbBCDEJKLFGHI plasmid transfer operon on pRL1JI are two regulatory genes, bisR and traR, which encode LuxR-type quorum-sensing regulators required for conjugation. Potential recipients of pRL1JI induce the traI-trb operon and plasmid transfer via a quorum-sensing relay involving BisR, TraR and the traI-trb operon in donor cells. BisR induces expression of traR in response to N-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3-OH-C14:1-HSL), which is produced by CinI in potential recipient strains. In donor strains (carrying pRL1JI), BisR represses the expression of the chromosomal gene cinI; this repression results in a very low level of formation of 3-OH-C14:1-HSL and hence relatively low levels of expression of traR and the traI-trb operon in strains carrying pRL1JI. However, if 3-OH-C14:1-HSL from potential recipients is present, then traR and plasmid transfer are induced. The induction of traR occurs at very low concentrations of 3-OH-C14:1-HSL (around 1 nm). TraR then induces the traI-trb operon in a quorum-sensing dependent manner in re-sponse to the TraI-made AHLs, N-(3-oxo-octanoyl)-l-homoserine lactone and N-(octanoyl)-l-homoserine lactone. The resulting autoinduction results in high levels of expression of the traI-trb operon. Premature expression of the traI-trb operon is reduced by TraM, which probably titres out TraR preventing expression of traI when there are low levels of traR expression. Expression of traR in stationary phase cells is limited by feedback inhibition mediated by TraI-made AHLs.  相似文献   

14.
One remarkable characteristic of the genomes of some Rhizobium species is the frequent occurrence of rearrangements. In some instances these rearrangements alter the symbiotic properties of the strains. However, no detailed molecular mechanisms have been proposed for the generation of these rearrangements. To understand the mechanisms involved in the formation of rearrangements in the genome of Rhizobium phaseoli, we have designed a system which allows the positive selection for amplification and deletion events. We have applied this system to investigate the stability of the symbiotic plasmid of R. phaseoli. High-frequency amplification events were detected which increase the copy number of a 120-kb region carrying nodulation and nitrogen fixation genes two to eight times. Deletion events that affect the same region were also found, albeit at a lower frequency. Both kinds of rearrangements are generated by recombination between reiterated nitrogenase (nifHDK) operons flanking the 120-kb region.  相似文献   

15.
Ten strains ofRhizobium leguminosarum bv.phaseoli isolated from soils of Morocco were more tolerant than three culture collection strains to acid conditions in culture media or in sterile soil. The survival rate of a tolerant strain in a sandy acid soil was greater than a sensitive strain at different humidity levels. These properties should give locally selected strains an advantage in nodulatingPhaseolus vulgaris roots in soils similar to those used here.  相似文献   

16.
A protein was identified which was made by wild-type strains of Rhizobium leguminosarum but not by nodulation-deficient derivatives which had deletions of their symbiotic plasmids. The protein, which had a subunit molecular weight of ca. 24,000 ( 24K ), was found to be present in large amounts within bacteria that had been reisolated from the surface of inoculated pea roots but was not detected in bacteroids isolated from nodules. The protein could also be induced during growth of R. leguminosarum on nutrient medium and was purified from the cytoplasmic fraction of broken cells. Antiserum raised against the purified protein was used to screen transposon-induced mutants of R. leguminosarum, and four independent mutants were isolated which lacked the protein. The sites of the Tn5 insertions were found to map between the nitrogenase and nodulation genes on symbiotic plasmid pRL1JI , ca. 5 kilobases from the nitrogenase genes and 13 kilobases from the nodulation genes. Genetic determinants for the 24K protein were found to be closely linked to plasmid-borne nodulation genes for all strains of R. leguminosarum tested. However, the mutants which lacked the 24K protein still formed normal nitrogen-fixing nodules on peas, and the function of the protein is unknown.  相似文献   

17.
18.
The presence of derivatives of the broad host range plasmid RP4 in strains of Rhizobium leguminosarum biovar viciae severely inhibited nitrogen fixation by these strains in nodules on cultivars of pea (Pisum sativum). The strains formed small white nodules. Yield and total nitrogen values were comparable with those obtained for plants inoculated with a non-nodulating mutant. Strains carrying the same derivatives gave rise to nitrogen fixing nodules when inoculated on cultivars of lentils (Lens culinaris). Similar results were observed with plasmid R702 but not with R751, suggesting that the effect is limited to plasmids of the IncPα classification. Histological examination of nodules induced by strains carrying RP4 indicated that there are fewer infected cells and starch granules are organised unusually in the infected cells. Tn5 mutagenesis of plasmid RP4-4 was undertaken and Tn5 inserts were screened for abolition of the effect on nitrogen fixation. Eight mutants, having no effect on nitrogen fixation, were isolated. Seven of these had lost the ability to transfer by conjugation and the eighth was greatly reduced in conjugation frequency. Physical analysis of the transposon inserts revealed that they were located in the Tra regions of RP4.  相似文献   

19.
The prsD, prsE and orf3 genes of Rhizobium leguminosarum bv. trifolii strain TA1 encode the proteins which are significantly related to the family of bacterial ABC transporters type I secretion systems. The prsD:Km(r) mutant of strain TA1 induced non-nitrogen-fixing nodules on Trifolium pratense. Microscopic analysis of the nodules induced by prsD mutant did not reveal major abberations in the bacteroid appearance. The exopolysaccharide of prsD mutant was produced in increased amount and its level of polymerization was changed. SDS/PAGE of the proteins from the culture supernatants showed a lack of the 47-kDa protein in the culture of prsD mutant. Thus, PrsD may play a role in the export of this protein.  相似文献   

20.
Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti each have an active C4-dicarboxylic acid transport system dependent on an energized membrane. Free thiol groups are probably involved at the active site. Since EDTA inhibited succinate transport in R. leguminosarum bv phaseoli and R. loti, divalent cations may participate in the process; the activity was reconstituted by the addition of Ca2+ or Mg2+. However, EDTA had no effect on succinate transport in R. tropici, R. meliloti or R. trifolii strains. Ca2+ or Mg2+ had a similar effect on the growth rates of R. tropici and R. leguminosarum bv phaseoli; R. tropici did not require Ca2+ to grow on minimal medium supplemented with succinate but R. leguminosarum bv phaseoli required either or both of the divalent cations Ca2+ and Mg2+. A R. tropici Mu-dI (lacZ) mutant defective in dicarboxylic acid transport, was isolated and found unable to form effective bean nodules.The authors are with the Division of Biochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Avda, Italia 3318, 11.600 Montevideo, Uruguay  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号