首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment.  相似文献   

2.
The performances of five global multiple-sequence alignment programs (CLUSTAL W, Divide and Conquer, Malign, PileUp, and TreeAlign) were evaluated using part of the animal mitochondrial small subunit (12S) rRNA molecule. Conserved sequence motifs derived from an alignment based on secondary structural information were used to score how well each program aligned a data set of five vertebrate and five invertebrate taxa over a range of parameter values. All of the programs could align the motifs with reasonable accuracy for at least one set of parameter conditions, although if the whole sequence was considered, similarity to the structural alignment was only 25%-34%. Use of small gap costs generally gave more accurate results, although Malign and TreeAlign generated longer alignments when gap costs were low. The programs differed in the consistency of the alignments when gap cost was varied; CLUSTAL W, Divide and Conquer, and TreeAlign were the most accurate and robust, while PileUp performed poorly as gap cost values increased, and the accuracy of Malign fluctuated. Default settings for the programs did not give the best results, and attempting to select similar parameter values in different programs did not always result in more similar alignments. Poor alignment of even well-conserved motifs can occur if these are near sites with insertions or deletions. Since there is no a priori way to determine gap costs and because such costs can vary over the gene, alignment of rRNA sequences, particularly the less well conserved regions, should be treated carefully and aided by secondary structure and conserved motifs. Some motifs are single bases and so are often invisible to alignment programs. Our tests involved the most conserved regions of the 12S rRNA gene, and alignment of less well conserved regions will be more problematical. None of the alignments we examined produced a fully resolved phylogeny for the data set, indicating that this portion of 12S rRNA is insufficient for resolution of distant evolutionary relationships.  相似文献   

3.
Databases of multiple sequence alignments are a valuable aid to protein sequence classification and analysis. One of the main challenges when constructing such a database is to simultaneously satisfy the conflicting demands of completeness on the one hand and quality of alignment and domain definitions on the other. The latter properties are best dealt with by manual approaches, whereas completeness in practice is only amenable to automatic methods. Herein we present a database based on hidden Markov model profiles (HMMs), which combines high quality and completeness. Our database, Pfam, consists of parts A and B. Pfam-A is curated and contains well-characterized protein domain families with high quality alignments, which are maintained by using manually checked seed alignments and HMMs to find and align all members. Pfam-B contains sequence families that were generated automatically by applying the Domainer algorithm to cluster and align the remaining protein sequences after removal of Pfam-A domains. By using Pfam, a large number of previously unannotated proteins from the Caenorhabditis elegans genome project were classified. We have also identified many novel family memberships in known proteins, including new kazal, Fibronectin type III, and response regulator receiver domains. Pfam-A families have permanent accession numbers and form a library of HMMs available for searching and automatic annotation of new protein sequences. Proteins: 28:405–420, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Searching databases for distant homologues using alignments instead of individual sequences increases the power of detection. However, most methods assume that protein evolution proceeds in a regular fashion, with the inferred tree of sequences providing a good estimation of the evolutionary process. We investigated the combined HMMER search results from random alignment subsets (with three sequences each) drawn from the parent alignment (Rand-shuffle algorithm), using the SCOP structural classification to determine true similarities. At false-positive rates of 5%, the Rand-shuffle algorithm improved HMMER's sensitivity, with a 37.5% greater sensitivity compared with HMMER alone, when easily identified similarities (identifiable by BLAST) were excluded from consideration. An extension of the Rand-shuffle algorithm (Ali-shuffle) weighted towards more informative sequence subsets. This approach improved the performance over HMMER alone and PSI-BLAST, particularly at higher false-positive rates. The improvements in performance of these sequence sub-sampling methods may reflect lower sensitivity to alignment error and irregular evolutionary patterns. The Ali-shuffle and Rand-shuffle sequence homology search programs are available by request from the authors.  相似文献   

5.
6.
MOTIVATION: Alignment of RNA has a wide range of applications, for example in phylogeny inference, consensus structure prediction and homology searches. Yet aligning structural or non-coding RNAs (ncRNAs) correctly is notoriously difficult as these RNA sequences may evolve by compensatory mutations, which maintain base pairing but destroy sequence homology. Ideally, alignment programs would take RNA structure into account. The Sankoff algorithm for the simultaneous solution of RNA structure prediction and RNA sequence alignment was proposed 20 years ago but suffers from its exponential complexity. A number of programs implement lightweight versions of the Sankoff algorithm by restricting its application to a limited type of structure and/or only pairwise alignment. Thus, despite recent advances, the proper alignment of multiple structural RNA sequences remains a problem. RESULTS: Here we present StrAl, a heuristic method for alignment of ncRNA that reduces sequence-structure alignment to a two-dimensional problem similar to standard multiple sequence alignment. The scoring function takes into account sequence similarity as well as up- and downstream pairing probability. To test the robustness of the algorithm and the performance of the program, we scored alignments produced by StrAl against a large set of published reference alignments. The quality of alignments predicted by StrAl is far better than that obtained by standard sequence alignment programs, especially when sequence homologies drop below approximately 65%; nevertheless StrAl's runtime is comparable to that of ClustalW.  相似文献   

7.
Exon discovery by genomic sequence alignment   总被引:5,自引:0,他引:5  
MOTIVATION: During evolution, functional regions in genomic sequences tend to be more highly conserved than randomly mutating 'junk DNA' so local sequence similarity often indicates biological functionality. This fact can be used to identify functional elements in large eukaryotic DNA sequences by cross-species sequence comparison. In recent years, several gene-prediction methods have been proposed that work by comparing anonymous genomic sequences, for example from human and mouse. The main advantage of these methods is that they are based on simple and generally applicable measures of (local) sequence similarity; unlike standard gene-finding approaches they do not depend on species-specific training data or on the presence of cognate genes in data bases. As all comparative sequence-analysis methods, the new comparative gene-finding approaches critically rely on the quality of the underlying sequence alignments. RESULTS: Herein, we describe a new implementation of the sequence-alignment program DIALIGN that has been developed for alignment of large genomic sequences. We compare our method to the alignment programs PipMaker, WABA and BLAST and we show that local similarities identified by these programs are highly correlated to protein-coding regions. In our test runs, PipMaker was the most sensitive method while DIALIGN was most specific. AVAILABILITY: The program is downloadable from the DIALIGN home page at http://bibiserv.techfak.uni-bielefeld.de/dialign/.  相似文献   

8.
Finding functional sequence elements by multiple local alignment   总被引:15,自引:2,他引:13  
  相似文献   

9.
Multiple sequence alignment is an essential tool in many areas of biological research, and the accuracy of an alignment can strongly affect the accuracy of a downstream application such as phylogenetic analysis, identification of functional motifs, or polymerase chain reaction primer design. The heads or tails (HoT) method (Landan G, Graur D. 2007. Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol. 24:1380-1383.) assesses the consistency of an alignment by comparing the alignment of a set of sequences with the alignment of the same set of sequences written in reverse order. This study shows that HoT scores and the alignment accuracies are positively correlated, so alignments with higher HoT scores are preferable. However, HoT scores are overestimates of alignment accuracy in general, with the extent of overestimation depending on the method used for multiple sequence alignment.  相似文献   

10.
A comprehensive comparison of multiple sequence alignment programs.   总被引:35,自引:4,他引:31  
In recent years improvements to existing programs and the introduction of new iterative algorithms have changed the state-of-the-art in protein sequence alignment. This paper presents the first systematic study of the most commonly used alignment programs using BAliBASE benchmark alignments as test cases. Even below the 'twilight zone' at 10-20% residue identity, the best programs were capable of correctly aligning on average 47% of the residues. We show that iterative algorithms often offer improved alignment accuracy though at the expense of computation time. A notable exception was the effect of introducing a single divergent sequence into a set of closely related sequences, causing the iteration to diverge away from the best alignment. Global alignment programs generally performed better than local methods, except in the presence of large N/C-terminal extensions and internal insertions. In these cases, a local algorithm was more successful in identifying the most conserved motifs. This study enables us to propose appropriate alignment strategies, depending on the nature of a particular set of sequences. The employment of more than one program based on different alignment techniques should significantly improve the quality of automatic protein sequence alignment methods. The results also indicate guidelines for improvement of alignment algorithms.  相似文献   

11.
Enhanced genome annotation using structural profiles in the program 3D-PSSM   总被引:31,自引:0,他引:31  
A method (three-dimensional position-specific scoring matrix, 3D-PSSM) to recognise remote protein sequence homologues is described. The method combines the power of multiple sequence profiles with knowledge of protein structure to provide enhanced recognition and thus functional assignment of newly sequenced genomes. The method uses structural alignments of homologous proteins of similar three-dimensional structure in the structural classification of proteins (SCOP) database to obtain a structural equivalence of residues. These equivalences are used to extend multiply aligned sequences obtained by standard sequence searches. The resulting large superfamily-based multiple alignment is converted into a PSSM. Combined with secondary structure matching and solvation potentials, 3D-PSSM can recognise structural and functional relationships beyond state-of-the-art sequence methods. In a cross-validated benchmark on 136 homologous relationships unambiguously undetectable by position-specific iterated basic local alignment search tool (PSI-Blast), 3D-PSSM can confidently assign 18 %. The method was applied to the remaining unassigned regions of the Mycoplasma genitalium genome and an additional 13 regions were assigned with 95 % confidence. 3D-PSSM is available to the community as a web server: http://www.bmm.icnet.uk/servers/3dpssm Copyright 2000 Academic Press.  相似文献   

12.
13.
We describe two novel sequence similarity search algorithms, FASTS and FASTF, that use multiple short peptide sequences to identify homologous sequences in protein or DNA databases. FASTS searches with peptide sequences of unknown order, as obtained by mass spectrometry-based sequencing, evaluating all possible arrangements of the peptides. FASTF searches with mixed peptide sequences, as generated by Edman sequencing of unseparated mixtures of peptides. FASTF deconvolutes the mixture, using a greedy heuristic that allows rapid identification of high scoring alignments while reducing the total number of explored alternatives. Both algorithms use the heuristic FASTA comparison strategy to accelerate the search but use alignment probability, rather than similarity score, as the criterion for alignment optimality. Statistical estimates are calculated using an empirical correction to a theoretical probability. These calculated estimates were accurate within a factor of 10 for FASTS and 1000 for FASTF on our test dataset. FASTS requires only 15-20 total residues in three or four peptides to robustly identify homologues sharing 50% or greater protein sequence identity. FASTF requires about 25% more sequence data than FASTS for equivalent sensitivity, but additional sequence data are usually available from mixed Edman experiments. Thus, both algorithms can identify homologues that diverged 100 to 500 million years ago, allowing proteomic identification from organisms whose genomes have not been sequenced.  相似文献   

14.
MOTIVATION: Propagating functional annotations to sequence-similar, presumably homologous proteins lies at the heart of the bioinformatics industry. Correct propagation is crucially dependent on the accurate identification of subtle sequence motifs that are conserved in evolution. The evolutionary signal can be difficult to detect because functional sites may consist of non-contiguous residues while segments in-between may be mutated without affecting fold or function. RESULTS: Here, we report a novel graph clustering algorithm in which all known protein sequences simultaneously self-organize into hypothetical multiple sequence alignments. This eliminates noise so that non-contiguous sequence motifs can be tracked down between extremely distant homologues. The novel data structure enables fast sequence database searching methods which are superior to profile-profile comparison at recognizing distant homologues. This study will boost the leverage of structural and functional genomics and opens up new avenues for data mining a complete set of functional signature motifs. AVAILABILITY: http://www.bioinfo.biocenter.helsinki.fi/gtg. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
MOTIVATION: The global alignment of protein sequence pairs is often used in the classification and analysis of full-length sequences. The calculation of a Z-score for the comparison gives a length and composition corrected measure of the similarity between the sequences. However, the Z-score alone, does not indicate the likely biological significance of the similarity. In this paper, all pairs of domains from 250 sequences belonging to different SCOP folds were aligned and Z-scores calculated. The distribution of Z-scores was fitted with a peak distribution from which the probability of obtaining a given Z-score from the global alignment of two protein sequences of unrelated fold was calculated. A similar analysis was applied to subsequence pairs found by the Smith-Waterman algorithm. These analyses allow the probability that two protein sequences share the same fold to be estimated by global sequence alignment. RESULTS: The relationship between Z-score and probability varied little over the matrix/gap penalty combinations examined. However, an average shift of +4.7 was observed for Z-scores derived from global alignment of locally-aligned subsequences compared to global alignment of the full-length sequences. This shift was shown to be the result of pre-selection by local alignment, rather than any structural similarity in the subsequences. The search ability of both methods was benchmarked against the SCOP superfamily classification and showed that global alignment Z-scores generated from the entire sequence are as effective as SSEARCH at low error rates and more effective at higher error rates. However, global alignment Z-scores generated from the best locally-aligned subsequence were significantly less effective than SSEARCH. The method of estimating statistical significance described here was shown to give similar values to SSEARCH and BLAST, providing confidence in the significance estimation. AVAILABILITY: Software to apply the statistics to global alignments is available from http://barton.ebi.ac.uk. CONTACT: geoff@ebi.ac.uk  相似文献   

16.
Most pairwise and multiple sequence alignment programs seek alignments with optimal scores. Central to defining such scores is selecting a set of substitution scores for aligned amino acids or nucleotides. For local pairwise alignment, substitution scores are implicitly of log-odds form. We now extend the log-odds formalism to multiple alignments, using Bayesian methods to construct “BILD” (“Bayesian Integral Log-odds”) substitution scores from prior distributions describing columns of related letters. This approach has been used previously only to define scores for aligning individual sequences to sequence profiles, but it has much broader applicability. We describe how to calculate BILD scores efficiently, and illustrate their uses in Gibbs sampling optimization procedures, gapped alignment, and the construction of hidden Markov model profiles. BILD scores enable automated selection of optimal motif and domain model widths, and can inform the decision of whether to include a sequence in a multiple alignment, and the selection of insertion and deletion locations. Other applications include the classification of related sequences into subfamilies, and the definition of profile-profile alignment scores. Although a fully realized multiple alignment program must rely upon more than substitution scores, many existing multiple alignment programs can be modified to employ BILD scores. We illustrate how simple BILD score based strategies can enhance the recognition of DNA binding domains, including the Api-AP2 domain in Toxoplasma gondii and Plasmodium falciparum.  相似文献   

17.
Protein sequence alignments are more reliable the shorter the evolutionary distance. Here, we align distantly related proteins using many closely spaced intermediate sequences as stepping stones. Such transitive alignments can be generated between any two proteins in a connected set, whether they are direct or indirect sequence neighbors in the underlying library of pairwise alignments. We have implemented a greedy algorithm, MaxFlow, using a novel consistency score to estimate the relative likelihood of alternative paths of transitive alignment. In contrast to traditional profile models of amino acid preferences, MaxFlow models the probability that two positions are structurally equivalent and retains high information content across large distances in sequence space. Thus, MaxFlow is able to identify sparse and narrow active-site sequence signatures which are embedded in high-entropy sequence segments in the structure based multiple alignment of large diverse enzyme superfamilies. In a challenging benchmark based on the urease superfamily, MaxFlow yields better reliability and double coverage compared to available sequence alignment software. This promises to increase information returns from functional and structural genomics, where reliable sequence alignment is a bottleneck to transferring the functional or structural characterization of model proteins to entire protein superfamilies.  相似文献   

18.
Alignment of RNA base pairing probability matrices   总被引:6,自引:0,他引:6  
MOTIVATION: Many classes of functional RNA molecules are characterized by highly conserved secondary structures but little detectable sequence similarity. Reliable multiple alignments can therefore be constructed only when the shared structural features are taken into account. Since multiple alignments are used as input for many subsequent methods of data analysis, structure-based alignments are an indispensable necessity in RNA bioinformatics. RESULTS: We present here a method to compute pairwise and progressive multiple alignments from the direct comparison of base pairing probability matrices. Instead of attempting to solve the folding and the alignment problem simultaneously as in the classical Sankoff's algorithm, we use McCaskill's approach to compute base pairing probability matrices which effectively incorporate the information on the energetics of each sequences. A novel, simplified variant of Sankoff's algorithms can then be employed to extract the maximum-weight common secondary structure and an associated alignment. AVAILABILITY: The programs pmcomp and pmmulti described in this contribution are implemented in Perl and can be downloaded together with the example datasets from http://www.tbi.univie.ac.at/RNA/PMcomp/. A web server is available at http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl  相似文献   

19.
MOTIVATION: The best quality multiple sequence alignments are generally considered to derive from structural superposition. However, no previous work has studied the relative performance of profile hidden Markov models (HMMs) derived from such alignments. Therefore several alignment methods have been used to generate multiple sequence alignments from 348 structurally aligned families in the HOMSTRAD database. The performance of profile HMMs derived from the structural and sequence-based alignments has been assessed for homologue detection. RESULTS: The best alignment methods studied here correctly align nearly 80% of residues with respect to structure alignments. Alignment quality and model sensitivity are found to be dependent on average number, length, and identity of sequences in the alignment. The striking conclusion is that, although structural data may improve the quality of multiple sequence alignments, this does not add to the ability of the derived profile HMMs to find sequence homologues. SUPPLEMENTARY INFORMATION: A list of HOMSTRAD families used in this study and the corresponding Pfam families is available at http://www.sanger.ac.uk/Users/sgj/alignments/map.html Contact: sgj@sanger.ac.uk  相似文献   

20.
ABSTRACT: BACKGROUND: Local alignment programs often calculate the probability that a match occurred by chance. The calculation of this probability may require a "finite-size" correction to the lengths of the sequences, as an alignment that starts near the end of either sequence may run out of sequence before achieving a significant score. FINDINGS: We present an improved finite-size correction that considers the distribution of sequence lengths rather than simply the corresponding means. This approach improves sensitivity and avoids substituting an ad hoc length for short sequences that can underestimate the significance of a match. We use a test set derived from ASTRAL to show improved ROC scores, especially for shorter sequences. CONCLUSIONS: The new finite-size correction improves the calculation of probabilities for a local alignment. It is now used in the BLAST + package and at the NCBI BLAST web site (http://blast.ncbi.nlm.nih.gov).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号