首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物染色体的银染技术、原理及应用   总被引:3,自引:0,他引:3  
早在本世纪初,硝酸银(AgNO_3)溶液就已用作为动物神经细胞的染色剂。其后,又广泛地用于核仁的染色。但真正应用于染色体研究,则是始于1975年Howell等人的工作,他们以硝酸银和氢氧化铵的混合液(简称铵银)处理人的染色体制片,再用福  相似文献   

2.
    
The mechanism by which silver staining of proteins in polyacrylamide gels interferes with mass spectrometry of peptides produced by proteolysis has been investigated. It was demonstrated that this interference increases with time between silver staining and gel processing, although the silver image is constant. This suggested an important role of the formaldehyde used in silver staining development in this interference process. Consequently, a formaldehyde-free staining protocol has been devised, using carbohydrazide as the developing agent. This protocol showed much increased peptide coverage and retained the sensitivity of silver staining. These results were however obtained at the expense of an increased background in the stained gels and of a reduced staining homogeneity.  相似文献   

3.
六种鲤科鱼类核仁组织者区的研究   总被引:5,自引:1,他引:5  
采用银染及荧光染色技术,对6种鲤科鱼的NORs进行了研究。结果表明:这6种鲤科鱼中瓦氏雅罗鱼、花 、麦穗鱼、白甲鱼具有2个NORs,长春鳊、墨头鱼具有4个NORs。根据实验研究结果对鲤科鱼类NORs多态性及演化等进行了讨论。The NORs were examined in 6 species of Cyprinidae by both silver nitrate and chromomycin A3,which led to the detections of 2 NORs in 4 species(Leuciscus waleckii,Hemibarbus maculates,Pseudorasbora parva,and Varicorhinus simus)and of 4 NORs in 2 species (Parabramis pekinensis,and Garra pingi pingi).Based on our results,the variation and evolution of fish NORs were discussed.  相似文献   

4.
Abstract: The striatum is vulnerable to hypoxic-ischemic injury during development. In a rodent model of perinatal hypoxia-ischemia, it has been shown that striatal neurons are not uniformly vulnerable. Cholinergic neurons and NADPH-diaphorase-positive neurons are relatively spared. However, it is unknown what classes of striatal neurons are relatively sensitive. One of the major classes of striatal neurons uses enkephalin as a neurotransmitter. We have studied the effect of early hypoxic-ischemic injury on this class of neurons using a quantitative solution hybridization assay for preproenkephalin mRNA in conjunction with in situ hybridization. Hypoxia-ischemia results in an early (up to 24 h) decrease in striatal preproenkephalin mRNA, which is shown by in situ hybridization to occur mainly in the dorsal portion of the striatum. By 14 days, whole striatal preproenkephalin mRNA and total enkephalin-containing peptide levels are normal. However, at 14 days, in situ hybridization reveals that regions of complete preproenkephalin mRNA-positive neuron loss remain in the dorsal region. Normal whole striatal levels are due to an up-regulation of preproenkephalin mRNA expression in the ventrolateral region of the injured striatum. Given the important role that the enkephalin-containing striatal efferent projection plays in regulating motor function, its relative loss may be important in the chronic disturbances of motor control observed in brain injury due to developmental hypoxic-ischemic injury.  相似文献   

5.
Abstract: Several amphetamine analogues are reported to increase striatal glutamate efflux in vivo, whereas other data indicate that glutamate is capable of stimulating the efflux of dopamine (DA) in the striatum via a glutamate receptor-dependent mechanism. Based on these findings, it has been proposed that the ability of glutamate receptor-blocking drugs to antagonize the effects of amphetamine may be explained by their capacity to inhibit DA release induced by glutamate. To examine this possibility further, we investigated in vivo the ability of glutamate antagonists to inhibit DA release induced by either methamphetamine (METH) or 3,4-methylenedioxymethamphetamine (MDMA). Both METH and MDMA increased DA efflux in the rat striatum and, in animals killed 1 week later, induced persistent depletions of DA and serotonin in tissue. Pretreatment with MK-801 or CGS 19755 blocked the neurotoxic effects of METH and MDMA but, did not significantly alter striatal DA efflux induced by either stimulant. Infusion of 6-cyano-7-nitroquinoxaline-2,3-dione into the striatum likewise did not alter METH-induced DA overflow, and none of the glutamatergic antagonists affected the basal release of DA when given alone. The findings suggest that the neuroprotective effects of NMDA antagonists do not involve an inhibition of DA release, nor do the data support the proposal that glutamate tonically stimulates striatal DA efflux in vivo. Whether phasic increases in glutamate content might stimulate DA release, however, remains to be determined.  相似文献   

6.
银染技术在生殖细胞研究中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
新近对传统的银染技术作出改良,以氨银反应观察精子发生及受精过程中碱性蛋白的更替,以Ag-As反应观察精子发生过程中NOR,嗜银细胞器,细胞骨架及其它嗜银成份的变化以及皮层皮应中嗜银成分的变化。  相似文献   

7.
There is a considerable amount of conflicting evidence from several studies as to the action of applied N-methyl-D-aspartate (NMDA) on the release of glutamate and aspartate in the brain. In the present study the effect of NMDA on extracellular levels of endogenous amino acids was investigated in conscious, unrestrained rats using intracerebral microdialysis. NMDA caused dose-related increases in extracellular levels of glutamate and aspartate; threonine and glutamine were unaffected. The NMDA-evoked release of glutamate and aspartate was significantly decreased by the specific NMDA receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid. In addition, increasing the perfusate concentration (and therefore the extracellular concentration) of Ca2+ significantly enhanced the NMDA-evoked release of glutamate and aspartate, whereas removal of Ca2+ and addition of a high Mg2+ concentration to the perfusate caused a significant reduction in their NMDA-evoked release. Moreover, the NMDA-evoked release of glutamate and aspartate was reduced in decorticate animals. These results demonstrate that, in the striatum in vivo, NMDA causes selective release of endogenous glutamate and aspartate from neurone terminals and that this action occurs through an NMDA receptor-mediated mechanism. The ability of NMDA receptor activation to induce release of glutamate and aspartate, perhaps by a positive feedback mechanism, may be relevant to the pathologies underlying epilepsy and ischaemic and hypoglycaemic brain damage.  相似文献   

8.
实验采用荧光双标技术研究谷氨酸转运体GLAST m RNA 在大鼠脑内表达的细胞定位, 研究表明, 在星形神经胶质细胞和神经元, GLASTm RNA 分别与神经胶质纤维蛋白(GFAP) 和神经元特异性烯醇化酶 (NSE) 有表达共存, 提示GLAST m RNA在星形神经胶质细胞和神经元上都有表达。  相似文献   

9.
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the extracellular release of striatal dopamine (DA), glutamate (Glu), or gamma-aminobutyric acid (GABA). Control and SN-lesioned rats were subjected to 20 min of forebrain ischemia by four-vessel occlusion combined with systemic hypotension. Levels of ICBF, as measured by the autoradiographic method, and energy metabolites were uniformly reduced in both the ipsi- and contralateral striata at the end of the ischemic period, a finding implying that the lesion did not affect the severity of the ischemic insult itself. Extracellular neurotransmitter levels were measured by microdialysis; the perfusate was collected before, during, and after ischemia. An approximately 500-fold increase in DA content, a 7-fold increase in Glu content, and a 5-fold increase in GABA content were observed during ischemia in nonlesioned animals. These levels gradually returned to baseline by 30 min of reperfusion. In SN-lesioned rats, the release of DA was completely prevented, the release of GABA was not affected, and the release of Glu was partially attenuated. However, excessive extracellular Glu concentrations were still attained, which are potentially toxic. This, taken together with the previous neuropathological findings, suggests that excessive release of DA is important for the development of ischemic cell damage in the striatum.  相似文献   

10.
In immature rodent brain, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) is a potent neurotoxin. In postnatal day (PND)-7 rats, intrastriatal injection of 25 nmol of NMDA results in extensive ipsilateral forebrain injury. In this study, we examined alterations in high-affinity [3H]glutamate uptake (HAGU) in NMDA-lesioned striatum. HAGU was assayed in synaptosomes, prepared from lesioned striatum, the corresponding contralateral striatum, or unlesioned controls. Twenty-four hours after NMDA injection (25 nmol), HAGU declined 44 +/- 8% in lesioned tissue, compared with the contralateral striatum (mean +/- SEM, n = 6 assays, p less than 0.006, paired t test). Doses of 5-25 nmol of NMDA resulted in increasing suppression of HAGU (5 nmol, n = 3; 12.5 nmol, n = 3; and 25 nmol, n = 5 assays; p less than 0.01, regression analysis). The temporal evolution of HAGU suppression was biphasic. There was an early transient suppression of HAGU (-28 +/- 4% at 1 h; p less than 0.03, analysis of variance, comparing changes at 0.5, 1, 2, and 3 h after lesioning); 1 or 5 days postinjury there was sustained loss of HAGU (at 5 days, -56 +/- 11%, n = 3, p less than 0.03, paired t test, lesioned versus contralateral striata).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Summary Motor behaviour relies on complex neurochemical interactions in the basal ganglia, in particular the striatum. Antagonistic influences in this region are exerted by afferent projections from, on the one hand, the ventral mesencephalon, utilizing dopamine as a transmitter, and, on the other hand, from the cerebral cortex, signalling by the excitatory amino acid glutamate. The activity in both these neuronal populations appears to be regulated by the neuropeptide cholecystokinin. This article concentrates on interactions between cholecystokinin and glutamate, summarizing some recent morphological, biochemical and behavioural findings. It is suggested that cholecystokinin, acting via the cholecystokininB receptor, potentiates the glutamatergic excitatory input to the striatum.  相似文献   

12.
Abstract: The effect of pros -methylimidazoleacetic acid (p-MIAA) was measured on the release of glutamate and aspartate from cerebral cortex, hippocampus, and striatum of freely moving rats, and on the uptake of 14C by striatal slices incubated in the presence of l -[14C]-glutamate. Twenty-four hours after implantation of a dialysis fiber, striatum, hippocampus, or cerebral cortex spontaneously released both glutamate and aspartate in the micromolar range. p-MIAA (1 µ M to 1 m M ), added to the dialysis perfusate, elicited a concentration-dependent increase of glutamate release from striatum with a maximal increase of about threefold. This effect did not occur in hippocampus or cortex. In none of these regions did p-MIAA increase aspartate release significantly. The p-MIAA effect was not mimicked by its isomer tele -methylimidazoleacetic acid. p-MIAA did not influence the uptake of glutamate by striatal slices. The glutamate-releasing action of p-MIAA may affect striatal function and explain the positive correlation between levels of p-MIAA in CSF and the severity of Parkinson's disease.  相似文献   

13.
In an experimental model of perinatal hypoxic-ischemic brain injury, we examined quisqualic acid (Quis)-stimulated phosphoinositide (PPI) turnover in hippocampus and striatum. To produce a unilateral forebrain lesion in 7-day-old rat pups, the right carotid artery was ligated and animals were then exposed to moderate hypoxia (8% oxygen) for 2.5 h. Pups were killed 24 h later and Quis-stimulated PPI turnover was assayed in tissue slices obtained from hippocampus and striatum, target regions for hypoxic-ischemic injury. The glutamate agonist Quis (10(-4) M) preferentially stimulated PPI hydrolysis in injured brain. In hippocampal slices of tissue derived from the right cerebral hemisphere, the addition of Quis stimulated accumulation of inositol phosphates by more than ninefold (1,053 +/- 237% of basal, mean +/- SEM, n = 9). In contrast, the addition of Quis stimulated accumulation of inositol phosphates by about fivefold in the contralateral hemisphere (588 +/- 134%) and by about sixfold in controls (631 +/- 177%, p less than 0.005, comparison of ischemic tissue with control). In striatal tissue, the corresponding values were 801 +/- 157%, 474 +/- 89%, and 506 +/- 115% (p less than 0.05). In contrast, stimulation of PPI turnover elicited by the cholinergic agonist carbamoylcholine, (10(-4) or 10(-2) M) was unaffected by hypoxia-ischemia. The results suggest that prior exposure to hypoxia-ischemia enhances coupling of excitatory amino acid receptors to phospholipase C activity. This activation may contribute to the pathogenesis of irreversible brain injury and/or to mechanisms of recovery.  相似文献   

14.
Summary The timing mechanism underlying ultradian (2–3 h) activity patterns in the common vole, Microtus arvalis, was studied using behavioural deprivation experiments. These were aimed at distinguishing between a homeostatic control mechanism, in which the rhythmic behaviour itself is part of the causal loop, and a clock mechanism, independent of the behaviour.In 175 experiments, deprivation of food during 3 ultradian cycles in (subjective) daytime did not result in significant changes in the ultradian periodicity of attempts to obtain the food, compared with ad lib. access to food and water. A minor, but significant increase in ultradian activity time () occurred in the course of the deprivation, but this was compensated by a shorter ultradian rest (). These results were obtained both in intact animals (n = 24), which showed ultradian and circadian rhythmicity in behaviour, and in animals (n = 21) with electrolytic lesions aimed at the suprachiasmatic nuclei (SCN), which lacked the circadian modulation of behaviour. Simultaneous deprivation of water and food in 8 voles without circadian rhythmicity during 40 experiments also did not lead to any change in the ultradian periodicity of feeding attempts.Rest deprivation was studied in 5 SCN lesioned voles, by forcing running wheel activity to continue following spontaneous running. Thus, the experimental activity bout was artificially lengthened to 2–9 h in 67 experiments. The onset of the subsequent rest episodes occurred independent of the duration of the preceding . The duration of was dependent on the preceding, experimental in a periodic fashion. The interval experimental (=lengthened +following ) was equal to one, two or three times the control (obtained on nonexperimental days). This result fits the prediction of a clock model and is in conflict with a monotonicincrease of with , as expected in a homeostatic, restorative process.It is concluded that the ultradian timing of activity in the common vole can be explained neither by homeostatic hunger or thirst mechanisms nor by homeostatic rest/activity regulation. The results strongly suggest an independent clock system generating ultradian feeding rhythms in the common vole.Abbreviations DD continuous darkness - LD light-dark regime - LL continuous light - RCA retrochiasmatic area - ARC arcuate nucleus - SCN suprachiasmatic nuclei - ultradian period - ultradian activity time - ultradian rest time  相似文献   

15.
Abstract: We have identified the regional distributions and developmental expression of NMDA-receptor proteins NR2A and NR2B in rat CNS, using two subunit-specific affinity-purified polyclonal antibodies that recognize NR2A and NR2B. In western blots of cells transfected with NR2A or NR2B cDNAs, and of brain homogenates, each antibody detects a single predominant 172-kDa protein corresponding to its homologous subunit. Both subunits are glycoproteins that are enriched in synaptic membranes. In adult rat CNS, NR2A and NR2B are enriched in cortex and hippocampus but are present in other forebrain regions. In hindbrain, NR2A is present at low levels but NR2B is barely detectable. These subunits are differentially expressed in postnatal CNS development. In cortex and striatum, NR2A is absent at birth but expression increases thereafter, whereas NR2B is expressed at nearly adult levels during forebrain development. In hindbrain, low levels of NR2A are present throughout development, whereas NR2B is expressed only transiently in the first postnatal weeks. These results suggest that native NMDA receptors are modulated by NR2A and NR2B in adult forebrain but not appreciably in hindbrain. In contrast, during early postnatal development, NR2B may have a more dominant role than NR2A in modulating NMDA receptors throughout the CNS. Thus, transient changes in NMDA-receptor function may occur during maturation of certain neuronal and/or glial populations via differential expression of NR2A and NR2B subunits.  相似文献   

16.
  总被引:2,自引:1,他引:2  
Abstract: The mouse mutant coloboma ( Cm /+), which exhibits profound spontaneous hyperactivity and bears a deletion mutation on chromosome 2, including the gene encoding synaptosomal protein SNAP-25, has been proposed to model aspects of attention-deficit hyperactivity disorder. Increasing evidence suggests a crucial role for SNAP-25 in the release of both classical neurotransmitters and neuropeptides. In the present study, we compared the release of specific neurotransmitters in vitro from synaptosomes and slices of selected brain regions from Cm /+ mice with that of +/+ mice. The release of dopamine (DA) and serotonin (5-HT) from striatum, and of arginine vasopressin and corticotropin-releasing factor from hypothalamus and amygdala is calcium-dependent. Glutamate release from and content in cortical synaptosomes of Cm /+ mice are greatly reduced, which might contribute to the learning deficits in these mutants. In dorsal striatum of Cm /+ mutants, but not ventral striatum, KCI-induced release of DA is completely blocked and that of 5-HT is significantly attenuated, suggesting that striatal DA and 5-HT deficiencies may be involved in hyperactivity. Further, although acetylcholine failed to induce hypothalamic corticotropin-releasing factor release from Cm /+ slices, restraint stress increased plasma corticosterone levels in Cm /+ mice to a significantly higher level than in +/+ mice, suggesting an important role for arginine vasopressin in hypothalamic-pituitary-adrenal axis activation. These results suggest that reduced SNAP-25 expression may contribute to a region-specific and neurotransmitter-specific deficiency in neurotransmitter release.  相似文献   

17.
Abstract: High doses of methamphetamine (METH) produce a long-term depletion in striatal tissue dopamine content. The mechanism mediating this toxicity has been associated with increased concentrations of dopamine and glutamate and altered energy metabolism. In vivo microdialysis was used to assess and alter the metabolic environment of the brain during high doses of METH. METH significantly increased extracellular concentrations of lactate in striatum and prefrontal cortex. This increase was significantly greater in striatum and coincided with the greater vulnerability of this brain region to the toxic effects of METH. To examine the effect of supplementing energy metabolism on METH-induced dopamine content depletions, the striatum was perfused directly with decylubiquinone or nicotinamide to enhance the energetic capacity of the tissue during or after a neurotoxic dosing regimen of METH. When decylubiquinone or nicotinamide was perfused into striatum during the administration of METH, there was no significant effect on METH-induced striatal dopamine efflux, glutamate efflux, or the long-term dopamine depletions measured 7 days later. However, a delayed perfusion with decylubiquinone or nicotinamide for 6 h beginning immediately after the last METH injection attenuated the METH-induced striatal dopamine depletions measured 1 week later. These results support the hypothesis that the compromised metabolic state produced by METH administration predisposes dopamine terminals to the neurotoxic effects of glutamate, dopamine, and/or free radicals.  相似文献   

18.
Abstract: The joint, but not independent, activation of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and metabotropic glutamate receptors induces liberation of arachidonic acid from cultured mouse striatal neurones. We examined whether blocking AMPA receptor desensitisation with cyclothiazide would modify this response. Cyclothiazide strongly potentiated the combined AMPA/(1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD)-evoked release of arachidonic acid (EC50 of ∼7 µ M ) but did not modulate the basal, ACPD, or NMDA response. The enhanced liberation of arachidonic acid, observed in the presence of cyclothiazide, was due to the appearance of a genuine AMPA response that was independent of an associative activation of metabotropic receptors. The potentiated and nonpotentiated AMPA responses were inhibited by both competitive [2,3-dihydroxy-6-nitro-7-sulphamoylbenzo( f )quinoxaline] and 2,3-benzodiazepine noncompetitive (GYKI 53655 and GYKI 52466) receptor antagonists. Cyclothiazide was equally effective at potentiating the AMPA response in either the presence or absence of glucose, suggesting that the increased glutamate-evoked arachidonic acid release observed in these cells under conditions of glucose deprivation is not due to reduced AMPA receptor desensitisation. The enhanced liberation of arachidonic acid measured in the presence of cyclothiazide appeared to result from a large (fourfold) elevation of the AMPA-induced increase in intracellular calcium level. Therefore, an AMPA-evoked mobilisation of arachidonic acid could potentially contribute to non-NMDA receptor-mediated neurotoxicity, which has been observed in neuronal cells in the presence of cyclothiazide.  相似文献   

19.
In vivo microdialysis was used to investigate whether nitric oxide (NO) modulates striatal neurotransmitter release in the rat through inducing cyclic GMP formation via soluble guanylate cyclase or formation of peroxynitrite (ONOO(-)). When NO donors, S-nitroso-N-acetyl-DL-penicillamine (SNAP; 1 mM) or (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (NOC-18; 1 mM), were retrodialysed for 15 min, acetylcholine (ACh), serotonin (5-HT), glutamate (Glu), gamma-aminobutyric acid (GABA), and taurine levels were significantly increased, whereas those of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were decreased. Only effects on ACh, 5-HT, and GABA showed calcium dependency. Inhibition of soluble guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 100 and 200 microM) dose-dependently reduced NO donor-evoked increases in ACh, 5-HT, Glu, and GABA levels. Coperfusion of SNAP or NOC-18 with an ONOO(-) scavenger, L-cysteine (10 mM) resulted in enhanced concentrations of Glu and GABA. On the other hand, DA concentrations increased rather than decreased, and no reductions in DOPAC and 5-HIAA occurred. This increase in DA and the potentiation of Glu and GABA were calcium-dependent and prevented by ODQ. Similar to NO, infusions of ONOO(-) (10 or 100 microM) decreased DA, DOPAC, and 5-HIAA. Overall, these results demonstrate that NO increases ACh, 5-HT, Glu, and GABA levels primarily through a cyclic GMP-dependent mechanism. For DA, DOPAC, and 5-HIAA, effects are determined by levels of ONOO(-) stimulated by NO donors. When these are high, they effectively reduce extracellular concentrations through oxidation. When they are low, DA concentrations are increased in a cyclic GMP-dependent manner and may act to facilitate Glu and GABA release further. Thus, changes in brain levels of antioxidants, and the altered ability of NO to stimulate cyclic GMP formation during ageing, or neurodegenerative pathologies, may particularly impact on the functional consequences of NO on striatal dopaminergic and glutamatergic function.  相似文献   

20.
    
Acetic acid‐Urea‐Triton (AUT) PAGE is commonly used method to separate histone variants and their post‐translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT‐PAGE has been reported, the method is time‐consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose ‘SDS‐Silver’ method for rapid, sensitive and mass spectrometry‐compatible staining of histones resolved on AUT‐PAGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号